
102

202309010-a

Replay 2023

00. About this Workshop
01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

Logistics
• Schedule

• Our Helpers

• Asking questions

• Feedback about the course

• Course conventions: Activity vs activity

• Prerequisite: Did everyone already complete Temporal 101?

First, let’s go over some logistics.

This is a four hour workshop. That’s a lot of time, and there’s a lot to cover. But I’ve taught a lot of four hour workshops and classes, and I’ve sat through my fair share of
them too. This workshop will consist of some lecture, but you’ll also have four hands-on exercises to do. I’ll also demo some things later on in the workshop. I’ve also
scheduled in three ten-minute breaks, around the top of each hour, so you can get up, stretch, or do what you need to do. And of course, if you have to leave for a phone
call, a bio break, or anything else, you should absolutely feel free to do so, but please make sure you do so courteously so you don’t distract others.  
 
Please put your phones on silent mode so as not to distract others. I’ve done the same. If you’re one of the unlucky folks who has to be on call, I recommend placing the
phone on on the table next to you so you can see any urgent notifications.

We have some amazing helpers here. They’re here to answer your tough questions, and help you if you get stuck during lab time if I’m not able to do so myself.

Speaking of questions, because there are a lot of people here, I ask that you keep any questions you have scoped to the material we’re covering. Definitely speak up if
things aren’t clear, let me know if I’m going too fast, and absolutely ask for clarification. However, if you have specific questions about your specific use-cases of
Temporal, you should ask those kinds of questions during the breaks or after the course.

After the course ends, you’ll receive a survey about the course. Your feedback will be incredibly helpful, as this course will eventually become a self-service online course.

In the course, you’ll see some words are capitalized, like Activity or Workflow. When we are talking about the specific Temporal feature, you’ll see it capitalized.

Finally, show of hands - who here took Temporal 101, either online or in the previous session? It’s not entirely required, but this course does build on the concepts from
that section.

During this workshop, you will
• Evaluate what a production deployment of Temporal looks like

• Use Timers to introduce delays in Workflow Execution

• Capture runtime information through logging in Workflow and Activity code

• Leverage the SDK's testing support to validate application behavior

• Differentiate completion, failure, cancelation, and termination of Workflow Executions

• Interpret Event History and debug problems with Workflow Execution

• Recognize how Workflow code maps to Commands and Events during Workflow Execution

• Consider why Temporal requires determinism for Workflow code

• Observe how Temporal uses History Replay to achieve durable execution of Workflows

Evaluate what a production deployment of Temporal looks like

Use Timers to introduce delays in Workflow Execution

Capture runtime information through logging in Workflow and Activity code

Leverage the SDK's testing support to validate application behavior

Differentiate completion, failure, cancelation, and termination of Workflow Executions

Interpret Event History and debug problems with Workflow Execution

Recognize how Workflow code maps to Commands and Events during Workflow Execution

Consider why Temporal requires determinism for Workflow code

Observe how Temporal uses History Replay to achieve durable execution of Workflows

• We provide a development environment for you in this workshop
• It uses the GitPod service to deploy a private cluster, plus a code editor and terminal

• You access it through your browser (may require you to log in to GitHub)

Exercise Environment

https://t.mp/replay-102-typescript

In this course you’ll use an exercise environment powered by GitPod. You won’t need to install anything on your personal machine to do the exercises. This environment
will include a text editor, running terminals, and a Temporal development cluster.  
 
Visit the URL on the screen on your local machine to start the exercise environment. While you do that, I’ll go through a quick demonstration of the environment itself.

--

TODO: Show the URL in the course material here: you need to set up a short URL and show it on this screen so that people can enter it in their own browser. Make sure
that they do that before you proceed. Having them launch GitPod now ensures that it will be initialized and ready for use by the time you get to the first exercise (although
it may go to sleep between now and then, it's much faster to wake it back up than to initialize it from scratch).

GitPod Overview
https://some-randomly-assigned-hostname.gitpod.io

https://some-randomly-assigned-hostname.gitpod.io

File browser 
source code 
for exercises

Code editor Embedded browser 
(displays Temporal Web UI)

Terminals

Refresh
button

(for Web UI)

--

These are the key things to point out in the exercise environment. It's best to demo this live. I've included this slide for reference, but feel free to delete it.

00. About this Workshop

01. Understanding Key Concepts in Temporal
02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

We’ll start by reviewing some of the key concepts in Temporal to make sure we’re all on the same page.

• What is a durable execution system?
• Ensures that your application runs reliably despite adverse conditions

• Automatically maintains application state and recovers from failure

• Improves developer productivity by making applications easier to develop, scale, and support

Temporal: A Durable Execution System

Let's begin the course by introducing a new term for describing Temporal, a *durable execution system*, and then covering some key concepts that provide the
foundation for what you'll learn in this course.

A durable execution system ensures that the code in your application runs reliably and correctly, even in the face of adversity. It maintains state, allowing your code to
automatically recover from failure, regardless of whether that failure was caused by a small problem, such as a network timeout, or a big one, such as a kernel panic on a
production application

server.

It also improves your productivity. As developers, we recognize that it's critical to handle problems such as failures and timeouts that can affect application reliability and
spend significant time writing code to do so. By providing higher-level abstractions for application development and built-in scalability, Temporal enables you to instead
focus on your application's business logic. Furthermore,

Temporal provides tools that enhance your productivity, such as the Web UI you can use to view the execution history of your applications, both past and present,
including their input parameters and return values. During this course, you'll use the Web UI to debug Workflow Execution and then ensure that your fix solved the
problem.

• Workflows are the core abstraction in Temporal
• It represents the sequence of steps used to carry out your business logic

• They are durable: Temporal automatically recreates state if execution ends unexpectedly

• In the TypeScript SDK, you define a Temporal Workflow as an exportable function that returns a
Promise

• Temporal requires that Workflows are deterministic

Temporal Workflows

< / > Workflow Definition

The sequence of steps that makes up the main business logic of your Temporal application is called a Workflow. Like most other applications you develop, it is it is
written in a general-purpose programming language such as go Java, TypeScript, or Python. Temporal provides language-specific software development kits, or SDKs,
that provide APIs and libraries to support your application. The code in this course uses Temporal's TypeScript SDK, so Workflows are defined as functions in the
TypeScript programming language.

Temporal requires that Workflows are deterministic. Temporal 101 explained this by stating that each execution of given Workflow must produce the same output given
the same input. In this course, you'll learn a more precise definition for determinism in Temporal. You'll also learn why Temporal requires that Workflows are deterministic,
what can happen if this rule is violated, and how to identify and avoid non-determinism in your Workflows.

• Activities encapsulate unreliable or non-deterministic code
• They are automatically retried upon failure

• In the TypeScript SDK, you define Activities as exportable functions that return Promises

• Activities should be idempotent

• A failed Activity may be retried, which means its code will be executed again

• Protect against scenarios where re-running an Activity results in duplicate records or other
undesirable side-effects

Temporal Activities

< / > Activity Definitions

< / > Workflow Definition

Activities provide a means of encapsulating parts of the business logic that are non-deterministic or prone to failure. These are called as part of Workflow Execution and
are retried upon failure. This means that transient or intermittent failures are handled automatically in the Temporal application. As with Workflows, Activities are also
defined as functions when implemented in TypeScript .

• Workers are responsible for executing Workflow and Activity Definitions
• They poll a Task Queue maintained by the Temporal Cluster

• The Worker implementation is provided by the Temporal SDK
• Your application will configure and start the Workers

Temporal Workers

< / > Worker Configuration

< / > Activity Definitions

Workflow Definition< / >

Although Temporal Cluster is essential for the durable execution of your Workflows, it does not execute your code. Instead it orchestrates the execution of your code by
maintaining a Task Queue. The Worker, which polls this Task Queue, is responsible for executing your Workflow and Activity code.

The Worker implementation is provided by the Temporal SDK, so you don't need to write it. You will need to configure it, though, by specifying the Task Queue name and
registering your Workflow and Activity functions. You'll also write code to start the Worker.

< / > Worker Configuration

< / > Activity Definitions

< / > Workflow Definition

Application
Code

Temporal

Code You Develop

In summary, a Temporal application developer is responsible for writing Workflow Definitions, Activity Definitions, and the code to configure and start the Workers that
coordinate with a Temporal Cluster to carry execution forward. Since these represent the code that you, the developer, are responsible for writing, we'll collectively refer
to them as the Temporal Application Code. However, a complete application is more than just that code.

You
develop

Temporal Client (SDK)

Temporal Worker (SDK)

< / > Worker Configuration

< / > Activity Definitions

< / > Workflow Definition

Provided by
SDK

A Complete Temporal Application

I think it's helpful to think of a Temporal application as having two parts: one that you develop and another part provided by the SDK.

Database
(required)

Elasticsearch
(optional)

Grafana
(optional)

Temporal
Server

Temporal Application

Your Application

< / > Your Code

Temporal Client (SDK)

Temporal Worker (SDK)

The Role of Temporal Cluster

Temporal Cluster

Backend Services

Frontend Service

A Temporal application gains its durability, scalability, and reliability from the support provided by the Temporal cluster. This is a deployment of the Temporal Server, which
consists of a frontend and multiple backend services, plus the database it relies on for persistence. A Temporal cluster may also include some optional components, such
as Elasticsearch for improved search performance, or Grafana for creating operational dashboards for visualizing the health of your cluster and applications.

Temporal CloudTemporal Application

Your Application

< / > Your Code

Temporal Client (SDK)

Temporal Worker (SDK)

The Role of Temporal Cloud

Alternatively, you might use the Temporal Cloud service, in which case you won't need to deploy run and manage your own Temporal cluster. A self-hosted cluster and
the Temporal Cloud service both perform the same roles. You can think of Temporal Cloud, conceptually speaking, as a very large high-performance, scalable, and
secure Temporal Cluster that's managed and supported by an expert operations team.

Temporal Cloud eliminates the need for your operations staff to plan deploy, secure, and manage a self-hosted cluster, so they're different from an operations
perspective, but equivalent from the developer's perspective. Since this is a course for developers, it will generally refer to Temporal Cluster for the sake of brevity. It will
mention Temporal Cloud specifically, when notable, but otherwise you can assume that a reference to Temporal cluster also applies to Temporal Cloud.

Temporal Cluster or Cloud

Ex
ec

ut
io

n

Temporal Application

Your Application

< / > Your Code

Temporal Client (SDK)

Temporal Worker (SDK)
Backend Services

Frontend Service

Applications Are External to the Cluster

O
rc

he
st

ra
tio

n

Regardless of whether you're running a self-hosted Temporal Cluster or using Temporal Cloud, Workflow Execution works the same way. In fact, moving your application
from a self-hosted cluster to Temporal Cloud requires minimal code change; typically just modifying a few connection parameters of the Temporal Client. You'll learn how
to make those changes during this course.

Be sure to notice the separation here: The application and its execution are external to the cluster. In a production deployment, they typically run on separate machines or
containers. In fact, it's possible to run the application and Temporal Cluster in different data centers.

Temporal Application

Your Application

< / > Your Code

Temporal Client (SDK)

Temporal Worker (SDK)

Temporal Uses gRPC for Communication

Temporal Cluster or Cloud

Backend Services

Frontend Service

Request

Response

Port 7233

Since the interaction between the application and cluster is key to how Temporal works, it's helpful to understand how they communicate.

Requests from a Temporal Client are always directed to the Frontend Service, which serves as a gateway. This communication takes place over TCP port 7233 and uses
gRPC, The messages themselves are encoded using Protocol Buffers.

When you invoke functions provided by the Temporal SDK in your code, the SDK generates a message corresponding to a Temporal Server API, encodes it using
Protocol Buffers, and sends a request to the Frontend Service using gRPC. The Frontend Service handles this request, routing it to the appropriate backend services as
necessary and sending a response, which also uses Protocol Buffers and gRPC, back to the client.

All of this communication can be secured with TLS, which encrypts the data as it is transmitted across the network and can also verify the identity of the client and server
by validating their certificates.

Review
• Temporal is a Durable Execution system

• Ensures that your application runs reliably despite adverse conditions

• Automatically maintains application state and recovers from failure

• Workflows represent the sequence of steps used to carry out your business
logic. They must be deterministic

• Activities encapsulate unreliable or non-deterministic code. They should be
idempotent because they can be retried

• Workers execute Workflow and Activity Definitions by polling a Task Queue

• Your Workers, Workflows, and Activities make up a Temporal Application
and are separate from the Temporal Cluster

Temporal is a Durable Execution system

This ensures that your application runs reliably despite adverse conditions

And that it automatically maintains application state and recovers from failure

Workflows represent the sequence of steps used to carry out your business logic. They must be deterministic.

Activities encapsulate unreliable or non-deterministic code. They should be idempotent because they can be retried.

Workers execute Workflow and Activity Definitions by polling a Task Queue

Your Workers, Workflows, and Activities make up a Temporal Application and are separate from the Temporal Cluster.

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code
03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

Now let’s look at some things you can do to improve the code you write when you build Temporal applications. In Temporal 101, you built basic Workflows and Activities,
and you focused on understanding important foundational concepts. Now it’s time to start thinking more about how to write Workflows and Activities that are easier to
maintain.

• Workflows and Activities can take any number of parameters as input
• Changing the number, position, or type of these parameters can affect backwards compatibility

• It is a best practice to pass all input in a single object
• Changes to the composition of this object does not affect the function signature

• This is also the recommended approach for return values
• Using object in both places allows for evolution of input and output data

Compatible Evolution of Input Parameters

We’ll start by looking at the inputs and outputs of your Workflows and Activities.

Workflows and Activities can take any number of parameters as input. But changing the number, position, or type of these parameters can affect backwards-
compatibility.

The best course of action you can take is to provide all of the inputs to a Workflow or Activity as a single object.  
 
You should also do this for results of workflows and activities.

• Imagine that you have the following Activity

• You later need to update it to support other languages, such as German.
• Changing what is passed into or returned from the function changes its signature

• Changes to the input value’s composition don't affect the signature of the functions that use it

Example: Using an Object in an Activity (1)

// This Activity returns a customized greeting in Spanish, using the provided name
export async function getSpanishGreeting(name: string): Promise<string> {
 // implementation omitted for brevity

input output

To understand why this is considered a best practice, consider the "Hello World" scenario you worked with in Temporal 101, which had an Activity that called a
microservice to retrieve a greeting in Spanish. This function took a string (containing a person's name) as input and returned a string (containing the customized greeting
in Spanish) as output:

Although this certainly works, it is not the best approach for something you plan to deploy to production and maintain over time. Later on you’ll need to update this so it
supports other languages.

Changing what gets passed into or returned from a function can change the function’s signature.

Example: Using an Object in an Activity (2)

// Define a type to encapsulate all data passed as input for this Activity
export interface GreetingInput {
 name: string;
 languageCode: string;
}

// Define a type to encapsulate the data returned by this Activity
export interface GreetingOutput {
 translation: string;
}

// Specify these types for the input parameter and return value of the Activity
export async function translateTerm(input: GreetingInput): Promise<GreetingOutput> {
 // An example to show how to access input parameters and create the return value
 const lang = encodeURIComponent(input.languageCode);
 const name = encodeURIComponent(input.name);
 const response = await axios.get(url);
 const content = response.data;
 return { translation: content };
}

• The following code sample illustrates how you could support this

input output

This code example illustrates a better design for this Activity. It begins by defining a interface that represents input to this Activity, which includes the original name but
also the new language code field. It then defines another interface, which represents the output returned by the Activity function. It just contains the translated greeting
for now, but you could update this as requirements change in the future. Finally, the Activity function itself has been updated to use these new objects instead of the
strings it had previously used.

While the initial move from strings to objects is not a backwards compatible change, making that change as early as possible will ensure that the code is better able to
handle future evolution of the input or output data.

Exercise #1: Using Objects for Data

• During this exercise, you will
• Examine how the Workflow uses objects for input parameters and return values

• Define types to represent input and output of an Activity Definition

• Update the code to use the objects and types you've defined for the Activity

• Run the Workflow to ensure that it works as expected

• Refer to this exercise's README.md file for details
• Don't forget to make your changes in the practice subdirectory

Now it’s your turn. In the exercise environment, you’ll find instructions for a hands-on lab where you’ll change the code to work with objects instead of basic strings.

• Temporal Clusters coordinate with Workers through named Task Queues
• The name of this Task Queue is specified in the Worker configuration

• The Task Queue name is also specified by a Client when starting a Workflow

• Task Queues are dynamically created, so a mismatch in names does not result in an error

• Recommendations for naming Task Queues
• Do not hardcode the name in multiple places: Use a shared constant if possible

• Avoid mixed case: Task Queue names are case sensitive

• Use descriptive names, but make them as short and simple as practical

• Plan to run at least two Worker Processes per Task Queue

Task Queues

Another area to consider are task queues and how you specify them. First, let’s go over task queues.

Temporal Clusters coordinate with Workers through named Task Queues

The name of this Task Queue is specified in the Worker configuration

The Task Queue name is also specified by a Client when starting a Workflow

Task Queues are dynamically created, so a mismatch in names does not result in an error

So you shouldn’t hard code the name in multiple places.

And the names are case sensitive. It’s best to use a constant.

Use descriptive names but make them as short as practical. 
 
Also, plan to have at least two Worker processes per task queue.

• Client

Specifying the Task Queue

• Worker

await client.workflow.start(OrderProcessingWorkflow, {
 args: [order],
 taskQueue: TASK_QUEUE_NAME,
 workflowId: `workflow-order-${order.id},`,
})

const worker = await Worker.create({
 taskQueue: TASK_QUEUE_NAME,
 connection,
 workflowsPath: require.resolve('./workflows'),
 activities,
});

You have to provide the task queue when you define your client and your worker. It’s best to use a constant so you are sure you’re using the same task queue name
everywhere. It’s easy to accidentally create a task on a task queue that no workers are watching because the workers aren’t watching the same task queue the client
started the task on!

http://order.id

// Example: An order processing Workflow might include order number in the Workflow ID
await client.workflow.start(OrderProcessingWorkflow, {
 args: [order],
 taskQueue: TASK_QUEUE_NAME,
 workflowId: `workflow-order-${order.id},`,
})

Workflow IDs
• You specify a Workflow ID when starting a Workflow Execution

• This should be a value that is meaningful to your business logic

• Must be unique among all running Workflow Executions in the namespace
• This constraint applies across all Workflow Types, not just those of the same Type

• This is an important consideration for choosing a Workflow ID

Another area to consider is the Workflow ID you specify.

When you start a Workflow Execution you specify a Workflow ID. This must be unique across all running workflow executions in the namespace. We recommend you
specify a workflow ID that is meaningful to your business logic. You can use an order number or another identifier that’s easier for you to track and look up later.

http://order.id

• An Activity that throws an error is considered as failed
• It may or may not be retried, based on the Retry Policy associated with its execution

• By default, Activity Execution is associated with a Retry Policy

• The default policy results in retrying until execution succeeds or is canceled

• A Workflow that throws an error is also considered as failed if the error is
a Temporal failure.
• Cancellation, Activity errors that bubble up, or ApplicationFailure.

• Other errors raised result in Workflows being retried

• Failing an Activity is common, but failing a Workflow is considered unusual

• It is considered a better practice to fix the Workflow

How Errors Affect Workflow Execution

When you’re writing Temporal code, you also need to be mindful about how you handle errors.  
 
Activities that throw errors are failed, and a Workflow will retry these activities based on its retry policy.  
The default policy results in retrying until execution succeeds or is canceled

A Workflow that throws an error is also considered as failed if the error is a Temporal failure. 
This is a Cancellation, an explicit ApplicationFailure error, or an Activity error that bubbles up.

Other errors raised result in the Workflow being retried.

• You can throw errors as necessary in Activities 
 

• Developers are not required to use a Temporal-specific API for errors
• Application errors are automatically converted into a language neutral format

How to Return Errors in Application Code

try {
 const response = await axios.get(url);
 const content = response.data;
 return { translation: content };
} catch (error: any) {
 if (error.response) {
 throw new Error(`HTTP Error ${error.response.status}: ${error.response.data}
`);
 } else if (error.request) {
 throw new Error(`Request error: ${error.request}`);
 }
 throw new Error('Something else failed during translation.');
}

You can throw errors in your activities just like you would in any other TypeScript application. Any error you throw gets converted into a language neutral format.

• The recommended way of logging is via the interface in the TypeScript
SDK

• This interface defines four log levels, in increasing order of importance
•debug

•info

•warn

•error

Logging in Temporal Applications

Another way to improve your Temporal code is to incorporate logging into your workflows and activities. The SDK provides a logger you can use, with Debug, Info, Warn,
and Error levels.

• Log statements can include any number of key-value pairs

Using the Logger Interface in Workflows

import { log } from '@temporalio/workflow';

export async function sayHelloGoodbyeWorkflow(input: string): Promise<string> {
 log.info('SayHelloGoodbye Workflow Invoked', { name: input.name });

 // other code
}

In Workflows, you import the log function from the workflow package.

You can specify a message as well as a key/value object with additional data.

• Accessing and using the Activity logger is similar

Using the Logger in Activities

import * as activity from '@temporalio/activity';

export async function translateTerm(input: GreetingInput): Promise<GreetingOutput> {
 const context = activity.Context.current();
 context.log.info('Translating term:', { LanguageCode: input.languageCode, Term: input.term });
 // other code

}

In Activities, you access the log through the activity context. Once you have access to the log function, it works the same way. You specify a message and a key/value
object with additional info.

Customizing the Logger

import { DefaultLogger, Runtime } from '@temporalio/worker';

const logger = new DefaultLogger('WARN', ({ level, message }) => {
 console.log(`Custom logger: ${level} — ${message}`);
});
Runtime.install({ logger });

You can customize the default logger. You can set its default message level and how it logs. In this example, we change the default level and customize how it prints
values.

• Temporal Workflows may have executions that span several years
• Activities may also run for long periods of time

• We’ll only focus on long-running Workflows in this course!

Long-Running Executions

Sometimes you may have code that runs for extended periods of time. This may be your Workflow code or your Activity code. We’ll only focus on long-running Workflows
in this course. There are additional considerations for long-running Activities that are beyond the scope of this course.

• The following call submits a Workflow execution request to the cluster.

• Nothing happens until a Worker with a matching Workflow or Activity Type picks up the task

Workflow and Activity Executions are async operations

// Use a client to request Workflow execution
const handle = await client.workflow.start(sayHelloGoodbyeWorkflow, {
 args: [input],
 taskQueue: TASK_QUEUE_NAME,
 workflowId: 'translation-workflow-' + nanoid(),
});

What you should know is that Workflow and Activity Executions are async operations.

For example, this code submits a workflow execution request to the cluster.

Nothing happens until a Worker with a matching Workflow or Activity Type picks up the task.

• The TypeScript SDK uses Promises to provide access to results from asynchronous executions

• Use await client.workflow.start to get a handle once the Temporal Cluster has
accepted the receipt

• Use await handle.result() to get the result of the Workflow Execution

Waiting on Workflow Execution Results

// Start the Workflow Execution
const handle = await client.workflow.start(sayHelloGoodbyeWorkflow, {
 args: [input],
 taskQueue: TASK_QUEUE_NAME,
 workflowId: 'translation-workflow-' + nanoid(),
});

// Get the result of the Workflow Execution
const output = await handle.result();

The TypeScript SDK uses Promises to provide access to results from asynchronous executions. When executing a workflow, you first get a handle to the workflow
execution, but only once the Temporal Cluster has accepted the recepit of the request.

Use handle.result() to get the result of the workflow.

• The TypeScript SDK uses Promises to provide access to results from Activity Executions.

• Use await to wait for the result:

Waiting on Activity Execution Results

// use await to wait for the result.
const helloResult = await translateTerm(helloInput);

In the TypeScript SDK, An Activity is just an async function that returns a promise. To wait for the result of the Activity Execution, await the result of the call.

• Deferring access to results may reduce overall execution time
• This is a good strategy when a Workflow needs to call unrelated Activities

• It allows these Activities to execute in parallel, blocking only while accessing their results

Deferring Access to Activity Execution Results

// Request execution of multiple Activities: these calls do not block
const promiseA = activityA(inputA);
const promiseB = activityB(inputB);
const promiseC = activityC(inputC);

// This will block until all promises have resolved
const [resultA, resultB, resultC] = await Promise.all([promiseA, promiseB, promiseC]);

Sometimes you may want to defer the results. For example, if you need to call unrelated activities or have Activities execute in parallel. To invoke Activity Executions
without blocking, just resolve the promises later.

The Activity will still be scheduled and executed when you execute the call.

Review
• Use objects for input and outputs to Workflows and Activities

• Use constants when defining Task Queue names to ensure consistency

• Use Workflow IDs that are meaningful

• Handle errors appropriately, especially errors from Workflows.

• Use logging in your Workflows and Activities

• Remember that Workflows and Activities can run for long periods of time

Use objects for input and outputs to Workflows and Activities

Use constants when defining Task Queue names to ensure consistency

Use Workflow IDs that are meaningful

Handle errors appropriately, especially errors from Workflows.

Use logging in your Workflows and Activities

Remember that Workflows and Activities can run for long periods of time.

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition
04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

Next, we’ll look at Timers,

What is a Timer?
• Timers are used to introduce delays into a Workflow Execution

• Code that awaits the Timer pauses execution for the specified duration

• The duration is fixed and may range from seconds to years

• Once the time has elapsed, the Timer fires, and execution continues

Timers are used to introduce delays into a Workflow Execution.

Code that awaits the Timer pauses execution for the specified duration

The duration is fixed and may range from seconds to years

Once the time has elapsed, the Timer fires, and execution continues

Use Cases for Timers
• Execute an Activity multiple times at predefined intervals

• Send reminder e-mails to a new customer after 1, 7, and 30 days

• Execute an Activity multiple times at dynamically-calculated intervals

• Delay calling the next Activity based on a value returned by a previous one

• Allow time for offline steps to complete

• Wait five business days for a check to clear before proceeding

Use timers to

Execute an Activity multiple times at predefined intervals

Execute an Activity multiple times at dynamically-calculated intervals

Allow time for offline steps to complete

Pausing Workflow Execution for a Specified Duration

• Use the SDK-provided sleep function for this
• This is an alternative to TypeScript’s sleep function

• Use await to block until the Timer is fired (or is canceled)

// use sleep from temporal's TypeScript SDK
import { sleep } from '@temporalio/workflow';

// This will pause Workflow Execution for 10 seconds
await sleep("10 seconds");

You use the sleep function in your TypeScript workflows to create a Timer. There’s a nice string interface where you can specify the time duration.

What Happens to a Timer if the Worker Crashes?

• Timers are maintained by the Temporal Cluster

• Once set, they fire regardless of whether any Workers are running

• Scenario: Timer set for 10 seconds and Worker crashes 3 seconds later

• If Worker is restarted within 7 seconds, it will be running when the Timer fires

• It will be as if the Worker had never crashed at all

• If Worker is restarted 5 minutes later, the Timer will have already fired

• In this case, the Worker will resume executing the Workflow code without delay

Timers are maintained by the Temporal cluster. They fire even if there’s no worker running.

If a timer crashes and the timer has expired, the workflow resumes immediately. If there’s still time left, then the worker will be running by the time the Worker fires.

Exercise #2: Observing Durable Execution

• During this exercise, you will
• Create Workflow and Activity loggers

• Add logging statements to the code

• Add a Timer to the Workflow Definition

• Launch two Workers, run the Workflow, and kill one of the Workers, observing that the
remaining Worker completes the execution

• Refer to this exercise's README.md file for details
• Don't forget to make your changes in the practice subdirectory

Review
• Timers introduce delays into a Workflow Execution

• Timers are maintained by the Temporal Cluster

• Use timers to

• Execute an Activity multiple times at predefined or calculated intervals

• Allow time for offline steps to occur

Timers introduce delays into a Workflow Execution

Timers are maintained by the Temporal Cluster

Use timers to

Execute an Activity multiple times at predefined or calculated intervals

Allow time for offline steps to occur

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code
05. Understanding Event History

06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

Validating Correctness of Temporal Application Code

• The @temporalio/testing package provides what you need.
• Use it with a suitable testing library. We recommend mocha.

• It downloads a test server.

• It provides TestWorkflowEnvironment, which you use to connect the Client and Worker to
the test server and interact with the test server.

• You can “skip time” so you can test long-running Workflows without waiting.

As with other applications you develop, testing your Temporal applications helps to validate that your business logic works as you intended.

The @temporalio/testing package provides what you need to test Temporal applications.

The `TestWorkflowEnvironment` type provides a runtime environment used to test a Workflow. You'll use this to register your Workflow Type and access information about
the Workflow Execution under test, such as whether it completed successfully and the result or error it returned.

Test setup with Mocha
• Add mocha and @temporalio/testing to your package.json file, along

with types:

"devDependencies": {
 "@temporalio/testing": "~1.8.0",
 "@types/mocha": "8.x",
 "mocha": "8.x",
 ...

Add mocha and @temporalio/testing to your package.json file, along with types as development dependencies:

Testing Activities - the estimateAge Activity
import axios from 'axios';
import { URLSearchParams } from 'url';

export async function estimateAge(name: string): Promise<number> {
 const base = 'https://api.agify.io/?';
 const url = base + new URLSearchParams({ name });

 const response = await axios.get(url);
 const responseBody = response.data;

 interface EstimatorResponse {
 age: number;
 count: number;
 name: string;
 }

 const parsedResponse: EstimatorResponse = responseBody as EstimatorResponse;
 return parsedResponse.age;
}

Let’s start by looking at how to test Activities.

To do that, we’ll use this estimateAge activity as an example. This Activity accepts a name and connects to a web service to guess someone’s age based on that name.
It’s not a complex Activity, but it does call an external service, so we should write tests for it.

The Activity Test
• The @temporalio/testing package provides MockActivityEnvironment, so you can

test Activities in isolation

import { MockActivityEnvironment } from '@temporalio/testing';
import { describe, it } from 'mocha';
import * as activities from '../activities';
import assert from 'assert';

describe('estimateAge activity', async () => {

 it('runs estimateAgeWorkflow with activity call', async () => {
 const env = new MockActivityEnvironment();
 const res = await env.run(activities.estimateAge, 'Betty');
 assert.equal(res, 76);
 });
});

The @temporalio/testing package provides MockActivityEnvironment, so you can test Activities in isolation.

You import MockActivityEnvironment, along with your activities, and the various pieces from Mocha, and then use the mock activity environment to run the activity You
can use regular assertions to test the result.

Testing Workflows - estimateAgeWorkflow
import { proxyActivities } from '@temporalio/workflow';
import type * as activities from './activities';

const { estimateAge } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function estimateAgeWorkflow(name: string): Promise<string> {
 const age = await estimateAge(name);
 return `${name} has an estimated age of ${age}`;
}

Here’s the workflow for estimating the age.

It takes in the name, executes the activity, and retrieves the result.

The Workflow Test (1)
import { TestWorkflowEnvironment } from '@temporalio/testing';
import { after, before, it } from 'mocha';
import { Worker } from '@temporalio/worker';
import { estimateAgeWorkflow } from '../workflows';
import * as activities from '../activities';
import assert from 'assert';

describe('estimateAge workflow', async () => {
 let testEnv: TestWorkflowEnvironment;

 before(async () => {
 testEnv = await TestWorkflowEnvironment.createTimeSkipping();
 });

 after(async () => {
 await testEnv?.teardown();
 });

 // tests

});

Testing a Workflow is a little more involved. You need to import the TestWorkflow Environment and the pieces from Mocha that you need, but you also need to import the
Worker, your Workflow, and the activities.

The Workflow Test (2)
import { TestWorkflowEnvironment } from '@temporalio/testing';
import { after, before, it } from 'mocha';
import { Worker } from '@temporalio/worker';
import { estimateAgeWorkflow } from '../workflows';
import * as activities from '../activities';
import assert from 'assert';

describe('estimateAge workflow', async () => {
 let testEnv: TestWorkflowEnvironment;

 before(async () => {
 testEnv = await TestWorkflowEnvironment.createTimeSkipping();
 });

 after(async () => {
 await testEnv?.teardown();
 });

 // tests

});

The TestWorkflow environment should be shared across tests, so you’ll set it up before all of your tests, and tear it down after your tests are done.

This is boilerplate you can use for most of your Workflow test cases.

The Workflow Test (3)
describe('estimateAge workflow', async () => {
 // before, after omitted

 it('runs estimateAgeWorkflow with activity call', async () => {
 const { client, nativeConnection } = testEnv;
 const worker = await Worker.create({
 connection: nativeConnection,
 taskQueue: 'test',
 workflowsPath: require.resolve('../workflows'),
 activities,
 });

 const result = await worker.runUntil(
 client.workflow.execute(estimateAgeWorkflow, {
 args: ['Betty'],
 workflowId: 'test',
 taskQueue: 'test',
 })
);

 assert.equal(result, 'Betty has an estimated age of 76');
 });
});

To test the Workflow itself, you set up a Worker and connect it to the test environment.

[advance]

The Workflow Test (4)
describe('estimateAge workflow', async () => {
 // before, after omitted

 it('runs estimateAgeWorkflow with activity call', async () => {
 const { client, nativeConnection } = testEnv;
 const worker = await Worker.create({
 connection: nativeConnection,
 taskQueue: 'test',
 workflowsPath: require.resolve('../workflows'),
 activities,
 });

 const result = await worker.runUntil(
 client.workflow.execute(estimateAgeWorkflow, {
 args: ['Betty'],
 workflowId: 'test',
 taskQueue: 'test',
 })
);

 assert.equal(result, 'Betty has an estimated age of 76');
 });
});

You then use that worker to execute the Workflow. 
 
[advance]

The Workflow Test (5)
describe('estimateAge workflow', async () => {
 // before, after omitted

 it('runs estimateAgeWorkflow with activity call', async () => {
 const { client, nativeConnection } = testEnv;
 const worker = await Worker.create({
 connection: nativeConnection,
 taskQueue: 'test',
 workflowsPath: require.resolve('../workflows'),
 activities,
 });

 const result = await worker.runUntil(
 client.workflow.execute(estimateAgeWorkflow, {
 args: ['Betty'],
 workflowId: 'test',
 taskQueue: 'test',
 })
);

 assert.equal(result, 'Betty has an estimated age of 76');
 });
});

You then assert the result like you would any other test.

[advance]

Mocking Activities in Workflow Tests
• The Workflow test we wrote is an Integration Test

• It invokes an Activity

• That Activity calls a real web service

• It’s tightly coupled to both

• Unit test Workflows by mocking Activities

• Define new replacement Activities

• Use the sinon library to create mocks

The Workflow test we wrote is an Integration Test! It’s tightly coupled to the activity which is coupled to the service it’s calling.

We can fix this by mocking out the activity calls in the workflow.

Mock the Activity Directly
it('runs estimateAgeWorkflow with mocked activity call', async () => {
 const { client, nativeConnection } = testEnv;
 const worker = await Worker.create({
 connection: nativeConnection,
 taskQueue: 'test',
 workflowsPath: require.resolve('../workflows'),
 activities: {
 estimateAge: async () => 76,
 },
 });

 const result = await worker.runUntil(
 client.workflow.execute(estimateAgeWorkflow, {
 args: ['Betty'],
 workflowId: 'test',
 taskQueue: 'test',
 })
);

 assert.equal(result, 'Betty has an estimated age of 76’);
})

When you assign the activities to the Worker, you can define a new Activity!

Mock the Activity with sinon
it('runs estimateAgeWorkflow with mocked activity call', async () => {
 const { client, nativeConnection } = testEnv;

 const estimateAgeMock = sinon.stub();
 estimateAgeMock.withArgs("Betty").resolves(76);

 const worker = await Worker.create({
 connection: nativeConnection,
 taskQueue: 'test',
 workflowsPath: require.resolve('../workflows'),
 activities: { estimateAge: estimateAgeMock },
 });

 const result = await worker.runUntil(
 client.workflow.execute(estimateAgeWorkflow, {
 args: ['Betty'],
 workflowId: 'test',
 taskQueue: 'test',
 })
);

 assert.equal(result, 'Betty has an estimated age of 76');
})

Alternatively, you can use the sinon library to create mocks that resolve the way you need them to resolve. This is helpful in situations where a workflow might invoke the
same activity with different inputs and outputs.

Running Tests

$ mocha \
 --require ts-node/register \
 --require source-map-support/register \
 src/mocha/*.test.ts

To run the tests, you use the mocha command and require a couple of libraries and point the test runner to the appropriate folder containing the tests.

Running Tests
• Add a test script command to package.json:

"scripts": {
 ...
 "test": "mocha --require ts-node/register --require source-map-support/register src/mocha/*.test.ts"
 ...
},

$ npm test

• Run the command

Of course, that’s too much typing. So you should add that command to the scripts section of the package.json file. That way you can run

npm test

to run your tests.

Exercise #3: Testing the Translation Workflow

• During this exercise, you will
• Write code to execute the Workflow in the test environment

• Develop a Mock Activity for the translation service call

• Observe time-skipping in the test environment

• Write unit tests for the Activity implementation

• Run the tests from the command line to verify correct behavior

• Refer to this exercise's README.md file for details
• Don't forget to make your changes in the practice subdirectory

Review
• Temporal’s TypeScript SDK provides support for testing Workflows and

Activities with the Mocha library

• You can test Activities in isolation

• You can test Workflows quickly, even if they have Timers

• You can mock Activities in Workflow tests, either directly or by using
Sinon

Temporal’s TypeScript SDK provides support for testing Workflows and Activities with the Mocha library.

You can test Activities in isolation

You can test Workflows quickly, even if they have Timers

You can mock Activities in Workflow tests, either directly or by using Sinon.

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History
06. Debugging Workflow Execution

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

import { proxyActivities } from '@temporalio/workflow';
import type * as activities from './activities';

const { greet } = proxyActivities<typeof activities>({
 startToCloseTimeout: '1 minute',
});

export async function helloWorkflow(name: string): Promise<string> {
 return await greet(name);
}

Running Workflow

const handle = await client.start(helloWorkflow, {
 args: ['Temporal'],
 taskQueue: 'greeting-tasks',
 workflowId: 'workflow-' + nanoid(),
});

+

=

Workflow Definition

Execution Request

Workflow Execution
results in

combined with

In Temporal, the code that defines your main business logic is implemented in a function referred to as a Workflow Definition. As with any other code you write, it doesn't
actually do anything until you execute it. You do this by using a Client to initiate an execution request,

[advance]

which you could do with the command-line tool or by using code like what you see here. Either approach results in the same thing: a running Workflow.

[advance]

 In Temporal, we refer to this as a Workflow Execution.

Workflow Execution 1

+

=
Workflow Execution 2

+

=

1 Workflow Definition

n Execution Requests

n Workflow Executions
results in

combined with

const handle = await
client.start(helloWorkflow, {
 args: [‘Workflow'],
 taskQueue: 'greeting-tasks',
 workflowId: 'workflow-2',
});

const handle = await
client.start(helloWorkflow, {
 args: ['Temporal'],
 taskQueue: 'greeting-tasks',
 workflowId: 'workflow-1',
});

import { proxyActivities } from '@temporalio/workflow';
import type * as activities from './activities';

const { greet } = proxyActivities<typeof activities>({
 startToCloseTimeout: '1 minute',
});

export async function helloWorkflow(name: string): Promise<string> {
 return await greet(name);
}

A single Workflow Definition can be executed any number of times. Each results in a new Workflow Execution. For example, you might run the same Workflow Definition
each morning to generate some type of daily report.

[advance]

Also notice that while the type of input is specified in the Workflow Definition, the value of that input is supplied in the execution request. It's very common to run the
same Workflow Definition multiple times, with each execution having a different input. For example, I might start the same Workflow Definition five thousand times in a
row, supplying a different customer ID as input each time, in order to send out monthly statements to each customer.

Workflow Execution States

This is a one-way transition

Open Closed

Every Workflow Execution has a unique RunID

A Workflow Execution has two possible states: open or closed. A Workflow Execution is one that is currently running, while a closed Workflow Execution is one that has
stopped running for one reason or another, perhaps because it completed successfully, failed, or was terminated.

The state of a Workflow Execution can, and eventually will, change from open to closed, but this is a one-way transition. Once a Workflow Execution enters the closed
state, it remains there.

Although you may run the same Workflow Definition again, even using the same input, this will result in a new Workflow Execution.

[advance]

Workflow Executions are uniquely identified by a value, called a Run ID, automatically

generated when it's launched. Therefore, each new Workflow Execution

will have a different Run ID than any previous ones.

What Happens During Workflow Execution

This cycle continues throughout Workflow Execution

AwaitProgress

While in the open state, the Workflow is essentially doing one of two things. It's either actively making progress

[advance]

or it's awaiting something that's required for progress to continue.

One example of something that a Workflow would await is Activity Execution. If the Workflow code uses the value returned by an Activity, then it must await the execution
of that Activity for the value to become available. Another example would be a Timer. If the Workflow is blocked waiting on a Timer, then it cannot make progress until
either that Timer fires or that Timer is canceled.

This cycle of progress and waiting continues throughout the Workflow Execution, only stopping when it enters the closed state.

How Workflow Code Maps
to Commands

Now let’s look at how the Workflow code you write maps to commands that get sent to the Temporal Cluster.

Review of Commands

• Certain API calls result in the Worker issuing a Command to the Temporal Cluster

• The Cluster acts on these commands, but also stores them

• This allows the Worker to recreate the state of a Workflow Execution following a crash

Command:
Schedule Activity Task

Worker

Temporal Client

Temporal Cluster

Task Queue

Activity

Task

2

3
1

await greet(name)

Before jumping into a detailed demonstration, let’s review Commands.

When the Worker encounters certain API calls during Workflow Execution, such as a call to execute an Activity, it sends a Command to the Temporal Cluster. The cluster
acts on these Commands, for example, by creating an Activity Task, but also stores them in case of failure. For example, if the Worker crashes, the Temporal cluster uses
this information to recreate the state of the Workflow to what it was immediately before the crash and then resumes progress from that point. This allows you, as a
developer, to code as if this type of failure wasn't even a possibility.

--

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: Order): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Basic Temporal Workflow Definition
• Defines a Start-to-Close Timeout

• Determines distance to customer

• Fails if customer is too far away for delivery

• Calculates total price of the pizzas

• Sleeps for 30 minutes

• Populates an object with billing information

• Sends a bill to the customer

So let’s walk through some code and explore how the code causes the Worker to send commands to the cluster. 
 
Here is code for a basic Temporal Workflow Definition. I simplified some aspects of the syntax and implementation to make it easier to follow and to better fit the limited
space on the screen. For example, I have removed some error-handling code and am using a string as a return value rather then an object, which would better reflect the
recommended best practice. Although such details are important for production code, they distract from the points I want to make here. However, you can find a working
example of the actual code in the code repository for this course.

I'll give a quick overview of what it does before explaining it in greater detail. It simulates the processing of a very simplistic pizza order. As with any Workflow that
executes one or more Activities, it begins with a few lines that define the parameters of their execution; in this case, it sets a Start-to-Close Timeout of five seconds.

Next, it requests execution of an Activity that that returns the distance to the customer's location. If determined to be more than 25 kilometers away, it returns an error,
failing the Workflow, because our business logic dictates that this is outside the service area.

It then goes on to iterate over the pizzas that make up this order, adding up the price of each one to calculate the total cost of the order. It then sleeps for 30 minutes,
allowing time for the order to be cooked and delivered, and then requests execution of an Activity that will bill the customer.

Basic Temporal Workflow Definition
• A Workflow is a sequence of steps

• Some steps are internal to the Workflow

• Examples include
• Setting configuration parameters
• Evaluating variables or expressions
• Performing calculations
• Populating data structures

• Do not involve interaction with the Cluster

• These internal steps are highlighted in white

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: Order): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

A Workflow is a sequence of steps.

Some steps are internal and don’t involve the cluster.

[advance]

Basic Temporal Workflow Definition
• Other steps do involve interaction with the cluster

• Examples include

• Executing an Activity
• Setting a Timer
• Returning an error from the Workflow
• Returning a value from the Workflow

• These external steps are highlighted in yellow

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

In contrast, other steps within the Workflow do result in interaction with the Temporal Cluster. I'll highlight those in yellow as I step through the code.

[advance]

For example, requesting execution of an Activity results in the Temporal Cluster creating an Activity Task and adding it to a Task Queue.

[advance]

The `sleep` call here is another example, as it results in the Temporal Cluster starting a Timer with a duration of 30 minutes.

[advance]

Returning an error from the Workflow function causes the Temporal Cluster to mark the Workflow as failed,

[advance]

while returning without an error causes the Temporal Cluster to mark the Workflow as completed.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

In this Workflow Definition, the first several statements are internal to the Workflow. That is, they don't require any interaction with the Temporal Cluster. Their runtime
behavior is the same as it would be in any other program.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

As execution continues, the Worker reaches a statement that does require interaction with the Temporal Cluster. In this case, it is a request to execute an Activity.

ScheduleActivityTask

("pizza-tasks", getDistance, { line1: "123 Oak St.", line2: "", ... })

Command

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This causes the Worker to issue a Command to the Temporal Cluster, which requests the desired result and provides the details required to achieve it. For example, the
`ScheduleActivityTask` Command contains details such as the Task Queue name, the Activity Type, and input parameter values. This Command is what initiates the
scheduling of an Activity Task and the resulting execution of the code in the corresponding Activity Definition. I'll cover that in more detail in a moment, but I'd like to
show a few more examples first.

Since the Workflow code is retrieving a result from the Activity Execution, it blocks until the Activity function returns.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Afterwards, the Worker continues executing the Workflow code. The next line, highlighted here, evaluates a variable. Depending on the outcome, it may return an error,
which would cause the Workflow to fail. However, let's be optimistic in this case and assume that this is a delivery for a nearby customer. The execution will continue.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The next few lines iterate over the items in the order and calculate the total order price. This is another place where there’s no interaction with the Temporal Server. The
execution happens locally.

StartTimer

(30 minutes)

Command

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

It now reaches the `workflow.Sleep` call, which is another statement that involves interaction with the Temporal Cluster. This causes the Worker to issue another
Command, one which requests that it start a Timer. The duration is one of the details specified in this Command.

Further execution of this Workflow will now pause for 30 minutes until the Timer fires.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The next few lines, highlighted here, create and populate a data

structure that represents the input for the next Activity. While it is

related to the Activity, it doesn't involve any interaction with the

cluster.

Command

ScheduleActivityTask

("pizza-tasks", sendBill, { amount: 2750, description: "Pizzas", ... }

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

However, the next statement, does. It requests execution of an Activity, so the Worker issues another Command to the Temporal Cluster.

CompleteWorkflowExecution

({ConfirmationNumber: "TPD-26074139"})

Command

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Finally, returning from the Workflow function also results in a Command. In this case, we're returning a result and using `nil` for the error. The Worker identifies that as a
successful completion of the Workflow Execution, so it issues a `CompleteWorkflowExecution` command to the Temporal Cluster, which includes the value we returned
from the function.

• Each Workflow Execution is associated with an Event History

• Represents the source of truth for what transpired during execution
• As viewed from the Temporal Cluster's perspective

• Durably persisted by the Temporal Cluster

• Event Histories serve two key purposes in Temporal
• Allow reconstruction of Workflow state following a crash

• Enable developers to investigate both current and past executions

• You can access them from code, command line, and Web UI

Workflow Execution Event History

Each Workflow Execution is associated with an Event History

This history represents the source of truth for what happened during the execution.

Event histories allow reconstruction of Workflow state following a crash

They also enable developers to explore and investigate current and past executions.

You can access histories from code, command line, and the web ui.

• An Event History acts as an ordered append-only log of Events
• Begins with the WorkflowExecutionStarted Event

• New Events are appended as Workflow Execution progresses

• Ends when the Workflow Execution closes

Event History Content

An Event History acts as an ordered append-only log of Events

Begins with the WorkflowExecutionStarted Event

New Events are appended as Workflow Execution progresses

Ends when the Workflow Execution closes

• Temporal places limits on a Workflow Execution's Event History

• Warnings begin after 10K (10,240) Events
• These say "history size exceeds warn limit" and will appear the Temporal Cluster logs

• They identify the Workflow ID, Run ID, and namespace for the Workflow Execution

• Workflow Execution will be terminated after exceeding additional limits
• If its Event History exceeds 50K (51,200) Events

• If its Event History exceeds 50 MB of storage

Event History Limits

Temporal places limits on a Workflow Execution's Event History

Warnings begin after 10,240 Events

Workflow Execution will be terminated after exceeding additional limits

• Every Event always contains the following three attributes
• ID (uniquely identifies this Event within the History)

• Time (timestamp representing when the Event occurred)

• Type (the kind of Event it is)

Event Structure and Characteristics

Every Event always contains the following three attributes

ID (uniquely identifies this Event within the History)

Time (timestamp representing when the Event occurred)

Type (the kind of Event it is)

• Additionally, each Event contains attributes specific to its type
• WorkflowExecutionStarted contains the Workflow Type and input parameters

• WorkflowExecutionCompleted contains the result returned by the Workflow function

• WorkflowExecutionFailed contains the error returned by the Workflow function

• ActivityTaskScheduled contains the Activity Type and input parameters

• ActivityTaskCompleted contains the result returned by the Activity function

Attributes Vary by Event Type

Attributes Vary by Event Type.

Additionally, each Event contains attributes specific to its type

WorkflowExecutionStarted contains the Workflow Type and input parameters

WorkflowExecutionCompleted contains the result returned by the Workflow function

WorkflowExecutionFailed contains the error returned by the Workflow function

ActivityTaskScheduled contains the Activity Type and input parameters

ActivityTaskCompleted contains the result returned by the Activity function

How Commands Map to
Events

So let’s look at how those commands we send map to events.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Let’s go back to the code you saw previously; the basic pizza order workflow.

I want to explain the layout you'll see as I proceed through the explanation. The workflow code is on the left,

[advance]

while the upper-right will illustrate the interaction between the Worker

[advance]

and the Temporal Cluster.

[advance]

Below that, I show a running list of the Commands issued,

[advance]

with the corresponding Events just to the right of it.

Finally, since I am going to approach this from the perspective of Commands, I will only include the Events that relate to those Commands. Specifically, I will only show
the ones related to the Activities and Timer in this Workflow, as this should be sufficient for you to see the pattern.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)

Issue  
Command

Activity Task

ActivityTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The call to the getDistance activity is the first thing in the Workflow that causes a command to be issued.

In response to this Command, the Temporal Cluster creates an Activity Task, adds it to the Task Queue, and appends the `ActivityTaskScheduled` Event to this Workflow
Execution's history.

I colored the rectangle for this Event light blue to indicate that it’s the direct result of a Command.

By the way, the Event History is durably persisted to the database used by the Temporal Cluster, so it will

survive even if the Temporal Cluster itself crashes.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)

Activity Task

ActivityTaskScheduled

Poll for Task

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When a Worker has spare capacity to do some work, and that might be the same Worker that sent the Command or another Worker that's listening to the this Task
Queue, it will poll that Task Queue on the Temporal Cluster.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

Dequeue

Activity Task

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

After the Temporal Cluster matches a Worker that's polling for a Task with a Task that's queued, the Worker will then begin executing the code needed to complete that
Task.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ActivityTaskScheduled

Activity Task

ActivityTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Temporal Cluster logs another Event in response to the Worker accepting the Task: `ActivityTaskStarted`. I used a different color and border style for the rectangle
depicting this event to indicate that it's an indirect result of the Command.

Temporal is designed to ensure that a Task is only ever given to a single Worker, although it will reschedule the Task if this Worker fails to complete it within the time
constraints you've specified. In this case, the `ActivityOptions` at the top of the Workflow Definition sets a Start-to-Close Timeout of 5 seconds, which means that the
Worker must complete this Task within 5 seconds.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

Activity Task

Respond  
Activity Task 

Complete

ActivityTaskStarted

ActivityTaskCompleted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker executes the code within the Activity Definition, and when that function returns a result, the Worker sends a message to the Temporal Cluster, notifying it that
the Task is complete. To be clear, this is just a notification, not a Command, because it's not requesting the Temporal Cluster to do something that will allow Workflow
Execution to progress. In response to this notification, the Temporal Cluster logs another Event: `ActivityTaskCompleted`.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

Issue  
Command

ActivityTaskStarted

ActivityTaskCompleted

StartTimer

(30 Minutes)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The next statement that results in a Command is the call to `sleep`, which issues a `StartTimer` command.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ActivityTaskStarted

ActivityTaskCompleted

StartTimer

(30 Minutes)
TimerStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Temporal Cluster responds by starting a Timer for 30 minutes and logging a `TimerStarted` Event to the history.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ActivityTaskStarted

ActivityTaskCompleted

StartTimer

(30 Minutes)
TimerStarted

TimerFired

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

After 30 minutes has elapsed, the Timer is fired, and the Temporal Cluster logs the Event to the history. The Workflow Execution continues with the next statement, but
this is an internal step.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ScheduleActivityTask

(sendBill)

ActivityTaskScheduled

Issue  
Command

Activity Task

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

StartTimer

(30 Minutes)
TimerStarted

TimerFired

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

It then reaches the final call to `ExecuteActivity` and issues another `ScheduleActivityTask` Command. The Temporal Cluster adds an Activity Task to the queue and logs
an `ActivityTaskScheduled` Event to history.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ScheduleActivityTask

(sendBill)

ActivityTaskScheduled

Activity Task

Poll for Task

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

StartTimer

(30 Minutes)
TimerStarted

TimerFired

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Worker polls the Task Queue, it will be matched with this Task.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ScheduleActivityTask

(sendBill)

ActivityTaskScheduled

Dequeue

Activity Task

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

ActivityTaskStarted

StartTimer

(30 Minutes)
TimerStarted

TimerFired

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker removes it from the queue, and begins working on it.

The Temporal Cluster logs an ActivityTaskStarted event to the history, signifying that the Task has been dequeued.

Commands Events

Worker Process

Worker Entity

Temporal Client

Temporal Cluster

Task Queue

ScheduleActivityTask

(getDistance)
ActivityTaskScheduled

ScheduleActivityTask

(sendBill)

ActivityTaskScheduled

Activity Task

Respond  
Activity Task 

Complete

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

ActivityTaskStarted

ActivityTaskCompleted

StartTimer

(30 Minutes)
TimerStarted

TimerFired

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 const bill = {
 customerID: order.customer.customerID,
 orderNumber: order.orderNumber,
 amount: totalPrice,
 description: 'Pizza',
 };

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Activity function returns, the Task is complete, and the Worker notifies the Temporal Cluster. In response, the Temporal Cluster logs the `ActivityTaskCompleted`
Event to the history.

Workflow Execution States

You already know that Workflows can be Open or Closed. But there are different types of Closed states.

Completed

Meaning: The Workflow function returned a result

Open

Completed

Workflow Execution can enter the closed state for any one of several reasons. The most desirable reason is because the Workflow function returned a result, meaning
that it completed successfully.

Open

Continued-As-New

Meaning: Future progress will take place in a new Workflow Execution

Continued-As-New

A variation on this is known as Continued-as-New, which means that the code is still running, but any future progress will take place in a new Workflow Execution and
Event History.

Why would a Workflow do this? In order to maintain good performance, Temporal enforces a limit on both the size and number of events in the history associated with a
Workflow Execution. You'll find the details in our documentation, but for reference, you're unlikely to reach these limits unless a single execution of your Workflow runs
thousands of Activities during its execution. Continue-As-New is a technique designed to avoid reaching these limits.

Open

Failed

Meaning: The Workflow function returned an error

Failed

However, Workflow Execution can close as a result of something undesirable happening. An example of this is a failed execution, which happens when the Workflow
function returns an error instead of a result.

Open

Timed Out

Meaning: Execution exceeded a specified time limit

Timed Out

The Workflow Execution might time out, meaning that a time limit associated with the execution elapsed before the Workflow function returned either a result or an error.

Open

Terminated

Meaning: Temporal Cluster acted upon a termination request

Terminated

It might be terminated, whether from code, the command line, or the Web UI.

Open

Canceled

Meaning: Temporal Cluster acted upon a request to cancel execution

Canceled

Likewise, someone may have initiated cancellation of the Workflow using code, the command line, or the Web UI. Cancelation is similar to termination, but is a more
graceful way of ending execution prematurely, since Workflows and Activities can be notified of cancelation and perform some cleanup before exiting.

Summary of Workflow Execution States

Open

Closed

CanceledCompleted Failed Timed OutTerminatedContinued-As-New

In summary, an open Workflow Execution is one that is currently running. Eventually, every Workflow Execution will transition to the closed state, with a final status
corresponding to one of the six items shown at the bottom.

Understanding the differences between them and what causes each to occur will help you interpret the Workflow Execution Event History. This, in turn, can help you to
determine the source of a problem. For example, if the Workflow Execution ended with a status of failed, then you know that the Workflow function returned an error. In
fact, the final Event in the history for that Workflow Execution will contain information about that error, which is conveniently shown in the Web UI.

Workflow and Activity Task States

Now let’s look at the states of Tasks.

ActivityTaskCompleted

ActivityTaskStarted

ActivityTaskScheduled

Activity Task Event Sequence

Did you notice a pattern in the names of the Activity-related Events?

Completed

Started

Scheduled1

2

3

Activity States in that Sequence

Removing "ActivityTask" from their names reveals the state of that Task at the time of the Event.

The ones that ended with the suffix of "Scheduled" indicate that a Task was added to the Task Queue, an action performed by the Cluster. This was always the first Event
in that sequence and Events that represent subsequent actions performed by the Worker follow that.

Tasks that end with "Started" represent the Worker dequeueing a Task, while those ending with "Completed" represents a Worker successfully finishing a Task.

Cancel RequestedCompleted Failed Timed Out

Started

Scheduled1

2

3

Activity Task States

However, just as with Workflow Executions, Activity Tasks have closed states that represent failure, as well as success, as you can see here.

Recognizing this pattern will help you to understand the names of the Timeouts and what they represent.

 For example, Start-to-Close Timeout is the maximum amount of time allowed for between when the Worker starts working on a task and when that Task enters the
closed state. In other words, it specifies the maximum duration between step 2,

[advance]

when the Worker begins execution, and step 3,

[advance]

when execution ends.

Activity Task Events

ActivityTaskCanceledActivityTaskCompleted ActivityTaskFailed ActivityTaskTimedOut

ActivityTaskStarted

ActivityTaskScheduled

Let's now look at the Events corresponding to each of these states and the various ways that a Task can reach one of these closed states.

Here are the Events corresponding to each of those states. The Worker determines whether an Activity Task is completed or failed. If executing the code for that Task
results in an error, then the Task is failed. If it runs to completion without an error, then the Task is completed.

However, it is the Temporal Cluster that determines whether the Task times out, based on whether or not the Worker notified the Cluster of the result before the time
period allowed for execution elapsed. This is intuitive when you think about it, since a Worker crash is one reason that a Task might time out, and the Worker that had
crashed wouldn't be able to report a time out.

Completed Failed TimedOut

Started

Scheduled1

2

3

Workflow Task States

The pattern you saw applies to Workflow Tasks as well.

WorkflowTaskCompleted WorkflowTaskFailed WorkflowTaskTimedOut

WorkflowTaskStarted

WorkflowTaskScheduled

Workflow Task Events

Here are the Events related to Workflow Tasks. As you can see, their names follow the same pattern you saw with Activity Tasks.

Now that you understand how Activity and Workflow Task events got their names, you'll be much more effective at interpreting the Event Histories in the Temporal Web
UI.

Sticky Execution
• To improve effectiveness of Worker's 

caching, Temporal use "sticky"  
execution for Workflow Tasks

• A Worker which completed the 
first Workflow Task is given preference  
for subsequent Workflow Tasks in the  
same execution via a Worker-specific  
Task Queue

• Sticky execution is visible in the Web UI

• See the Task Queue Name / Kind fields

• This does not apply to Activity Tasks

First Workflow Task

Later Workflow Task

Workers cache the state of the Workflow functions they execute. To make this caching more effective, Temporal employs a performance optimization known as "Sticky
Execution," which directs Workflow Tasks to the same Worker that accepted them earlier in the same Workflow Execution.

Note that Sticky Execution only applies to Workflow Tasks. Since Event History is associated with a Workflow, the concept of Sticky Execution is not relevant to Activity
Tasks.

Review
• Workflow Definition + Execution Request = Workflow Execution

• Each Workflow Execution is associated with an Event History that is the source of truth

• Executing Activities or creating Timers issues Commands to the Cluster, which creates
Tasks, and adds Events to the Event History.

• Workflow Execution States can be Open or Closed

• Closed means Completed, Continue-As-New, Failed, Timed Out, Cancelled, or
Terminated

• Workflow and Activity Tasks can be Scheduled, Started, or Completed. They can also
fail or time out.

• Sticky Execution directs Workflow Tasks to the same Worker that accepted them
earlier in the same Workflow Execution

Workflow Definition + Execution Request = Workflow Execution

Each Workflow Execution is associated with an Event History that is the source of truth

Executing Activities or creating Timers issues Commands to the Cluster, which creates Tasks, and adds Events to the Event History.

Workflow Execution States can be Open or Closed

Closed means Completed, Continue-As-New, Failed, Timed Out, Cancelled, or Terminated

Workflow and Activity Tasks can be Scheduled, Started, or Completed. They can also fail or time out.

Sticky Execution directs Workflow Tasks to the same Worker that accepted them earlier in the same Workflow Execution

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow History
07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

Let’s get into debugging Workflow History next. And to do that, I’ll go through a series of demonstrations rather than slides.

Demos
• Debugging a Workflow that Doesn’t Progress

• Interpeting Event History Workflow Execution States can be Open or
Closed

• Terminating a Workflow Execution with the Web UI

• Identifying and Fixing a Bug in an Activity Definition

Specifically, we’ll go through these four demonstrations:

Debugging a Workflow that Doesn’t Progress

Interpeting Event History Workflow Execution States can be Open or Closed

Terminating a Workflow Execution with the Web UI

Identifying and Fixing a Bug in an Activity Definition

Demo:
Debugging a Workflow that Doesn’t

Progress

Demo 
 
Scenario: Workflow started, but no Workers running

Example used: Translation Workflow (exercises/testing-code/solution)

Demo:
Interpeting Event History

Scenario: A tour of the Web UI and how to interpret Events

Example used: Translation Workflow (exercises/testing-code/solution)

Demo: Terminating a Workflow
Execution with the Web UI

* **Scenario**: Worker and translation microservice are running, but the Workflow has not yet been started. We’ll start the Workflow with invalid input that is passed to the
Activity, thereby resulting in a perpetual of Activity execution attempt failures, so we terminate the Workflow, allowing us to run it again with the correct input.

* **Example used**: Translation Workflow (`exercises/testing-code/solution`)

Demo:
Identifying and Fixing a Bug

in an Activity Definition

* **Scenario**: I make a small change to the Workflow Definition and am running it to see it in action. Unfortunately,

 someone on my team introduced a bug in the Activity definition, which I discover while running the Workflow.

* **Example used**: Translation Workflow (`exercises/testing-code/solution`)

Exercise #4: Debugging and Fixing an Activity Failure

• During this exercise, you will
• Start a Worker and run a basic Workflow for processing a pizza order

• Use the Web UI to find details about the execution

• Diagnose and fix a latent bug in the Activity Definition

• Test and deploy the fix

• Verify that the Workflow now completes successfully

• Refer to this exercise's README.md file for details
• Don't forget to make your changes in the practice subdirectory

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow History

07. Deploying Your Application to Production
08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

We have so far depicted the Temporal Server as having a Frontend Service and a set of backend services. A developer doesn't usually require detailed knowledge of the
server architecture, but it is important to understand how Temporal scales to support the needs of your applications in production.

Temporal Cluster Services

Frontend Service

History  
Service

Matching  
Service

Worker  
Service

Frontend
An API Gateway that validates and routes inbound calls

History
Maintains history and moves execution progress forward

Matching
Hosts Task Queues and matches Workers with Tasks

Worker Service
Runs internal system Workflows

The cluster has a frontend API gateway that validates and routes inbound calls to other services.

What was previously labeled "Backend Services" is actually a set of three services.

[advance]

The History Service, as the name implies, maintains the history of Workflow Executions by persisting their state. However, it is

also the service responsible for moving the progress of Workflow Executions forward by initiating Workflow and Activity Tasks.

[advance]

It works closely with the Matching Service, which hosts the Task Queue and matches tasks to polling Workers.

[advance]

Finally, the Worker Service runs Workflow that are internal to the system, such as those used for replication or archiving old data.

The Worker Service

• The Internal Workflows it runs
are not exposed to users

• The service name is coincidental
- it has no relationship to the
Worker that’s part of your
application

128

Frontend Service

History  
Service

Matching  
Service

Worker  
Service

I want to make two important points regarding the Worker service. First, the internal Workflows that it runs are not exposed to users; you won't see them listed, for
example, in the Web UI nor in the output of the Temporal commandline tool. Second, the service name suggests a relationship to the Worker that is part of your Temporal
application, but this is coincidental, so take care not to confuse the two.

A Temporal Cluster with One Instance of Each Service

• What you get when running
Temporal with Docker Compose
or Temporal CLI

• Good for development on a small
scale

129

Frontend Service

History  
Service

Matching  
Service

Worker  
Service

Here you see a Temporal Cluster with one instance of each service, similar to what you might have for small-scale development, perhaps by deploying a cluster on your
laptop with Docker Compose.

Cluster Scalability

Temporal Application

Your Application

< / > Your Code

Temporal Client (SDK)

Temporal Worker (SDK)

Temporal Cluster

Worker  
Service

instances

Frontend Service instances

History  
Service

instances

Matching 
Service

instances

Lo
ad

Ba

la
nc

er

However, a Temporal Cluster can scale well beyond that, with multiple instances of each service. Production clusters often have dozens or even hundreds of instances of
these services running, which provides availability because the cluster can continue operations even as some instances fail.

When running multiple Frontend Services, it is typical to use a load balancer or network ingress to distribute inbound traffic among the various Frontend Service
instances. This approach provides clients with a single address to use when contacting the Frontend Service, thus eliminating the need to know how many Frontend
Services are deployed or the addresses of those individual instances.

Each of these four services scales independently of the others, which means that operations teams can direct resources precisely where they're needed.

Connectivity (Logical)

Elasticsearch  
Server

Database  
Server

Frontend  
Service

Worker
Service B

History  
Service B

Matching  
Service B

Client

Optional, but recommended 
for better performance

Putting it all together, we can see the communication and connectivity between the services.

[advance]

 I've annotated the three backend services with a "B" and

[advance]

have also included the required database component

[advance]

and optional Elasticsearch server component.

Although Elasticsearch is optional, it is very much recommended for production clusters because it improves the performance of basic searches that help you to locate a
specific Workflow Execution,

[advance]

To the left of the Frontend Service is a client, such as the Temporal Client inside a Worker that executes your code or a Temporal Client in another part of your application

that starts a Workflow and retrieves its result.

[advance]

Clients do not not communicate with the backend services, nor do they access the cluster's other components, such as the database that it uses for persistence. This
makes it easy to control access at the network level, since firewalls and other network hardware only need to pass inbound traffic to a single port.

You learned earlier that the communication between the Client and the Frontend Service uses gRPC, sending messages encoded using Protocol Buffers. This is also true
of the communication between the Frontend and the backend services. As with communication between the Client and Frontend Service, this internode communication
can also use TLS for enhanced security.

Connectivity (Physical)

History Service #4

History Service #5

History Service #3

History Service #2

History Service #1

History Service #7

History Service #6

Worker Service #1

Worker Service #3

Worker Service #2

Elasticsearch Server #1

Elasticsearch Server #2

Database Server #1

Database Server #2

Matching Service #4

Matching Service #5

Matching Service #3

Matching Service #2

Matching Service #1

Matching Service #8

Matching Service #7

Matching Service #6

Frontend Service #2

Frontend Service #3

Frontend Service #1

Lo
ad

Ba

la
nc

er

Client

Client

Temporal Clusters used for production workloads can—and typically will—have multiple instances of each service. Here is an example of a production deployment, which
illustrates the connectivity between different parts of the cluster as well as Temporal Clients that are external to the cluster.

As with the database, the load balancer isn't a component provided by Temporal. If you're running a self-hosted cluster on bare metal, you would likely use an actual
piece of network hardware for load balancing. If you're deploying a self-hosted cluster on cloud infrastructure, then this will likely be part of the virtual network
infrastructure, such as an ingress in Kubernetes.

Although many users choose to self-host the database server instances for their clusters, others prefer to use cloud provider's database hosting service, such as the
AWS Relational Database Service (RDS).

• The following code example shows how to create a Temporal Client
• This expects a Frontend Service running on localhost at TCP port 7233

Creating a Temporal Client to a Local Cluster

// create connection details
const connection = await Connection.connect({ address: 'localhost:7233' });

// create the connection
const client = new Client({
 connection,
});

You create a connection and specify the address and port of the server and then use that connection with the Client. In this example, the client connects to a local
Temporal server.

• If you pass no options to the client, you’ll also connect to a local cluster:

Creating a Temporal Client to a Local Custer.

// create the local connection
const client = new Client();

• We recommend being explicit and specifying the options for the
connection.

You may see a more compact version for connecting to local clusters. While this works, we recommend you explicitly set the connection options, as you’ll eventually
move to production.

• Specify attributes to configure the Connection:
• address: A colon-delimited string containing the hostname and port for the Frontend Service

• Example: fe.example.com:7233

• tls: Details about your key and certificate when making an mTLS connection

• Specify attributes to create the Client:
• connection: The connection options you defined

• namespace: A string specifying the namespace to use for requests sent by this Client

Customizing a Temporal Client’s Options

You configure the client’s options in two places with the TypeScript SDK. You create a connection object and specify the address and port and the details about the key
and certificate you use to make a secure connection.

Then you configure the client by passing the connection you created along with the namespace you want to connect to.

http://fe.example.com:7233

• This example specifies a namespace, but not parameters needed for TLS

 

• The options shown above are equivalent to those in the following tctl command

Configuring Client for a Non-Local Cluster

// create connection details
const connection = await Connection.connect({ address: ‘mycluster.example.com:7233’ });

// create the connection
const client = new Client({
 connection,
 namespace: 'your-namespace',
});

$ tctl --address mycluster.example.com:7233 \
 --namespace your-namespace \
 workflow list

Here’s an example of a client connection that connects to a local server using a specific namespace.

• This example shows Client configuration for a secure non-local cluster
Configuring Client for a Secure Cluster

// Cert and key
const cert = await fs.readFile('./path-to/your.pem');
const key = await fs.readFile('./path-to/your.key');

// Connection options
const connectionOptions = {
 address: 'your-namespace.tmprl.cloud:7233',
 tls: {
 clientCertPair: {
 crt: cert,
 key,
 },
 },
};

// create connection details
const connection = await Connection.connect(connectionOptions);

// create the connection
const client = new Client({
 connection,
 namespace: 'your-namespace',
});

Here’s a more complex example where you’re connecting to a remote Temporal cluster using mTLS. You read in the key and certificate, specify those when creating the
connection, and then use that with the client. This example uses Temporal Cloud, but it works for any secure Temporal Cluster.

• Application deployment is usually preceded by a build process
• The tools used to do this vary by language, based on the SDK(s) used

• Temporal does not require the use of any particular tools

• You can use what is typical for the language or mandated by your organization

• TypeScript Temporal Applications are just Node apps.

• Your process can be the same process you use with any other Node.js
application that uses TypeScript.

Preparing a Temporal Application for Deployment

Application deployment is usually preceded by a build process. The tools used to do this vary by language, based on the SDK(s) used. You can use what is typical for the
language or mandated by your organization; Temporal doesn’t require you to use anything specific.

TypeScript Temporal apps are just Node apps, so you would use the same process to deploy your apps as you would with your other apps. You could deploy your app
directly to servers, or build images and deploy using containers.

.

• This improves performance since there are fewer imports.

• Activities stay separate.

Bundle Workflows for Performance

const workflowOption = () =>
 process.env.NODE_ENV === 'production'
 ? {
 workflowBundle: {
 codePath: require.resolve('../workflow-bundle.js'),
 },
 }
 : { workflowsPath: require.resolve('./workflows') };

async function run() {
 const worker = await Worker.create({
 ...workflowOption(),
 activities,
 taskQueue: 'production-sample',
 });

With the TypeScript SDK, you can create a bundle of your Workflows. This will combine all of your workflow definitions into a single file which will improve the startup
time of your Workers.

Here’s an example that uses a Workflow Bundle in production, but loads the Workflows directly in development mode.

• Create a bundle.ts script as part of your build process that uses the bundleWorkflowCode
function:

Creating the Bundle

import { bundleWorkflowCode } from '@temporalio/worker';
import { writeFile } from 'fs/promises';
import path from 'path';

async function bundle() {
 const { code } = await bundleWorkflowCode({
 workflowsPath: require.resolve('../workflows'),
 });
 const codePath = path.join(__dirname, '../../workflow-bundle.js');

 await writeFile(codePath, code);
 console.log(`Bundle written to ${codePath}`);
}

bundle().catch((err) => {
 console.error(err);
 process.exit(1);
});

The bundle itself is something you can create with a script you include as part of your build process, using the bundleWorkflowCode function. This is a script from our
samples that shows how to do this.

• Once ready, you'll deploy the application to production
• Deploy your code, plus runtime-time dependencies (e.g., Worker, Client, other libraries.)

• Ensure any needed dependencies are available at runtime

• For example, database drivers used by your application

• For example, the Java runtime or Python interpreter for polyglot Temporal applications

• Temporal is not opinionated about how or where you deploy the code
• Key point: Workers run externally to Temporal Cluster or Cloud

• It's up to you how you run the Workers: bare metal, virtual machines, containers, etc.

Temporal Application Deployment

People often speak of "deploying Workers" to production, but in reality, what you'll deploy is everything that's necessary for running a Worker Process.

That will include artifacts compiled from code you write; for example, the Workflow Definition, Activity Definitions, and the Worker configuration, but also all of the
dependencies used by that code. Those dependencies include the Temporal SDK, as well as any other libraries your code might use, which will vary from one app to the
next, but might include things such as database drivers or clients for any services that your Activities might call.

Additionally, the system on which the application runs, which might be a physical server, virtual machine, or container, must have the software needed to run an
application written in that language. For example, a Worker that executes Activities written in Java will require the Java Virtual Machine, while a Worker that executes
Python code will require the Python interpreter.

Temporal is not opinionated about how or where you deploy the code. Workers run externally to Temporal Cluster or Cloud. It's up to you how you run the Workers: bare
metal, virtual machines, containers, etc.

Let's quickly look at two possible examples

Worker  
Service

instances

Frontend Service instances

History  
Service

instances

Matching 
Service

instances

Deployment Scenario #1

Temporal ClusterYour Application

Lo
ad

Ba

la
nc

er

< / > < / > < / > < / > < / > < / > < / >

Database
(required)

Elasticsearch
(optional)

Grafana
(optional)

Example: Each Worker running in its own container

Here's the logical view of an application in the context of a production system. There are multiple Worker Processes, which we collectively refer to as a *Worker fleet*.
This runs on infrastructure you manage, which can take many forms, such as physical servers in your data center, virtual machines hosted by a cloud provider, or
containers running inside of a Kubernetes cluster.

On the other side of the connection is the Temporal Cluster or Temporal Cloud, along with the required database backend and other optional services.

Physical View of an Application in Production

Temporal Cluster

History Service #4

History Service #5

History Service #3

History Service #2

History Service #1

History Service #7

History Service #6

Worker Service #1

Worker Service #3

Worker Service #2

Elasticsearch Server #1

Elasticsearch Server #2

Matching Service #4

Matching Service #5

Matching Service #3

Matching Service #2

Matching Service #1

Database Server #1

Database Server #2

Matching Service #8

Matching Service #7

Matching Service #6

Frontend Service #2

Frontend Service #3

Frontend Service #1

Your Application

< / > < / > < / >< / >< / >

Application
Server #1

< / >< / >

Application
Server #2

Application
Server #3

Lo
ad

Ba

la
nc

er

Here's how that logical view maps to a physical deployment for a production system, which has multiple Worker Processes spread across an appropriate number of
servers. Although I've labeled them “Application Servers" here, they might be physical machines, virtual machines, or containers.

Applications always run on servers you control and manage. They are external to the Temporal Cluster or Temporal Cloud service. If you’re running a self-hosted cluster,
you are responsible for the infrastructure needed for both the application and the cluster.

Deployment Scenario #2

Temporal Cloud

< / > < / > < / >< / >< / >

Application
Server #1

< / >< / >

Application
Server #2

Application
Server #3

cloud.temporal.io

Your Application

Example: Multiple Worker Processes distributed across bare metal

Temporal Cloud is an alternative to a self-hosted cluster. You're still responsible for running the application and the infrastructure it runs on, but we manage everything on
the other end of the connection. With Temporal Cloud, your Clients have a single hostname and port to contact, representing a load-balanced Frontend Service.

When moving from a local development cluster to a self-hosted Cluster or Temporal Cloud, typically the only change you need to make is to the `ClientOptions` used to
create your connection.

For example, it may specify a different hostname, a different namespace, and possibly some options related to security, such as the locations of a certificate and key.

The rest of your application code does not need to change as you move between these environments.

Review
• Temporal Clusters have four parts:

• Frontend Service, History Service, Matching Service, and Worker Service

• To connect to a Temporal Cluster, you can specify the address, the namespace, and provide
certificates and keys for mTLS connections

• Use your existing build processes to prepare your app

• You can bundle Workflows to improve production performance

• Temporal is not opinionated about how or where you deploy the code

• You run your Workers, Activities, and Workflows on your own servers

• You can run the Temporal Cluster on your own servers or you can use Temporal Cloud.

Temporal Clusters have four parts:

Frontend Service, History Service, Matching Service, and Worker Service

To connect to a Temporal Cluster, you can specify the address, the namespace, and provide certificates and keys for mTLS connections

Use your existing build processes to prepare your app

You can bundle Workflows to improve production performance

Temporal is not opinionated about how or where you deploy the code

You run your Workers, Activities, and Workflows on your own servers

You can run the Temporal Cluster on your own servers or you can use Temporal Cloud.

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow History

07. Deploying Your Application to Production

08. Understanding Workflow Determinism
09. Conclusion

Temporal 102

So we’ve gone over a lot of topics so far. There’s one more thing we need to discuss, and that’s determinism with Workflows, and why it’s important.

History Replay:  
 

How Temporal Provides Durable Execution

First, let’s look at how Temporal’s History Replay provides the durable execution we’ve been talking about.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

await client.workflow.start(pizzaWorkflow, {args[input],...}

Start Workflow Execution

[
 {
 "orderNumber": "Z1238",
 "customer": {
 "customerID": 12983,
 "name": "María García",
 "email": "maria1985@example.com",
 "phone": "415-555-7418"
 },
 "items": [
 {
 "description": "Large, with pepperoni",
 "price": 1500
 },
 {
 "description": "Small, with mushrooms and onions",
 “price": 1000
 }
],
 "isDelivery": true,
 "address": {
 "line1": "701 Mission Street",
 "line2": "Apartment 9C",
 "city": "San Francisco",
 "state": "CA",
 "postalCode": "94103"
 }
 }
]

Commands and Events are essential to Workflow Replay, so I’ll explain the process using the pizza order Workflow that I used to cover those earlier.

However, as before, I have omitted error handling code for the sake of brevity. Relatedly, I won't mention every Event that is written to the history, but I show a red
rectangle to the left of each one when it first appears to help it stand out.

 I'll also do this for Commands. As I step through the code, I’ll use yellow highlighting to distinguish statements that result in Commands from code that does not, which
will be highlighted in white, just like before.

I'll start out by quickly walking through a Workflow Execution, showing a crash a little more than halfway through, and then explaining how Temporal uses Workflow
Replay to recover the state, ultimately resulting in a completed execution that's identical to one that hadn't crashed.

[advance]

It all begins by combining the code in the Workflow Definition with a request to execute it, passing in some input data.

[advance]

In this case, the input data contains information about the customer and the pizzas they ordered.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events
WorkflowExecutionStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This results in the Temporal Cluster logging a `WorkflowExecutionStarted` Event into the history,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

adding a Workflow Task to the queue, and logging a `WorkflowTaskScheduled` Event.

Although I didn't indicate it here, due to limited space on the screen, the `WorkflowExecutionStarted` Event contains the input data provided to this Workflow Execution.

Worker Process
Worker Entity

Temporal Client

Poll for Task
Temporal Cluster

Task Queue

Workflow Task

Commands EventsEvents
WorkflowExecutionStarted
WorkflowTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When a Worker polls the Task Queue

Worker Process
Worker Entity

Temporal Client

Dequeue
Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and accepts the Task,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 the cluster logs a `WorkflowTaskStarted` Event.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker then invokes the Workflow function and runs the code within it, one statement at a time.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The first statements do not result in any interaction with the cluster.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Respond Workflow
Task Complete

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This statement requests the execution of an Activity,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

so the Worker completes the current Workflow Task.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
“orderNumber": "Z1238", ...

Issue Command

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker issues a Command, which contains details about the Activity Execution, to the cluster

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Activity Task

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled (GetDistance)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

In response, the cluster queues an Activity Task and logs an `ActivityTaskScheduled` Event. I have shown this in blue to indicate that it is the direct result of the
Command.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Activity Task

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled (getDistance)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker now awaits the result from Activity Execution.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Activity Task

Poll for Task

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled (getDistance)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When this Worker—or another one—has spare capacity to do some work, it polls and is matched with the Activity Task, which it accepts.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Activity Task

Dequeue

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled (getDistance)

Events

ActivityTaskStartedScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster logs an Event to signify that the Worker has started the Activity Task. I've shown this in pink to indicate that it's the indirect result of the Command.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Activity Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled (getDistance)
ActivityTaskStartedScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker invokes the Activity Definition. In this case, that's the `getDistance` function.

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Respond Activity
Task Complete

(getDistance)ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Let’s suppose that it ultimately returns a value of `15`. When the function returns, the Worker notifies that cluster that the Activity Execution is complete.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster logs an `ActivityTaskCompleted` Event, which contains this result.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster then adds another Workflow Task to drive the Workflow Execution forward.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Poll for Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Worker polls, it's matched with this task,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Dequeue

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

dequeues it,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and resumes execution of the Workflow code.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The price is totaled up, which happens in the Workflow. Once again, there’s no communication with the Temporal Cluster.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This log statement also happens locally.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When it hits the `workflow.Sleep` call…

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Respond Workflow
Task Complete

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 it completes the current Workflow Task…

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

Duration: 30 minutes

Issue Command

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and issues a Command to the cluster, requesting it to set a Timer for 30 minutes.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster logs a `TimerStarted` Event in response. The Workflow cannot progress until that Timer fires, so the cluster does not queue any new Tasks for this Workflow
Execution until that happens.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker may continue polling during this time, but since there are no Tasks related

to this Workflow Execution, it won't perform any work. Therefore, setting a Timer in a Temporal Workflow, even one that lasts for several years, does not waste resources.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)

TimerFired

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

After 30 minutes has elapsed, the Timer fires, and the cluster logs a`TimerFired` Event. How does the Worker know that it can continue running the Workflow code now?

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

It's because the cluster now adds a new Workflow Task to the queue,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

Workflow Task

Poll for Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 which the Worker will find when it polls again.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

Workflow Task

Dequeue

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

After it accepts this Task,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

it continues execution of the Workflow code.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

StartTimer

Duration: 30 minutes

Workflow Task

Worker crashes here

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

However, let’s suppose that the Worker happens to crash right here. How does Temporal

recover the state of the Workflow?

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Worker crashes here

Workers are external to the cluster and operate with autonomy. They long-poll the Task Queue, but only when seeking work to perform. They retrieve tasks from the
queue, rather than being assigned tasks directly by the cluster.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

However, once a Worker has accepted a Task, it is expected to complete that task within a predefined duration, known as a Timeout.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Workflow
Task

Timeout
Exceeded

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

There are several types of Timeouts in Temporal, but since the Worker had a Workflow Task at the time of the crash, the relevant one in this case is the Workflow Task
Timeout, which has a default value of 10 seconds.

Temporal Cluster

Task Queue

Commands

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Therefore, if the Worker failed to complete this Workflow Task within that time, the cluster assumes that the Worker has gone down, and will schedule a new Workflow
Task.

Unlike the original Workflow Task, this one is not added to the "sticky queue" used to favor the Worker that previously accepted Workflow Tasks for this execution.
Instead, it's placed into the Task Queue specified when Workflow Execution began, which means that it will be available to any available Worker polling this Task Queue.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Poll for Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This Task will remain in the queue until another Worker polls and accepts it. That might be done by another one that's already running in the Worker fleet or by a new
Worker Process created by restarting the one that crashed.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Dequeue

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

In either case, the Worker accepts the task…

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands Events

Request
Event History

Workflow Task

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker will need the current Event History for this execution, so it requests it from the cluster.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Provide
Event HistoryWorkflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted

Events

(getDistance)

ActivityTaskCompleted (distance=15)
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted (30 Minutes)
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker streams the Event History from the cluster.

I've added a black horizontal line in the column on the right to indicate the final Event in the History at the time of the Worker crash.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker then begins a re-execution of the code, using the same input, which was stored in the `WorkflowExecutionStarted` Event.

With a couple of exceptions that I'll point out along the way, it does the same thing as when the previous Worker executed the code before the crash.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

By the way, because the Workflow code is deterministic, the state of all variables encountered so far is identical to what it was before the crash.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When it reaches the call to schedule the Activity, it creates a Command, but does not issue it to the cluster.

Instead, it inspects the Event History and finds three Events related to this Activity.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The first one indicates that the Task was previously scheduled by the cluster,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The second indicates that a Worker dequeued the Task,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

distance=15

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and the third indicates that the Worker successfully completed the Task for the `getDistance` Activity, having returned a value of `15`.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Worker assigns 15 to this variable
Events

WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Instead of executing the Activity again during replay, the Worker assigns the value returned by the __previous__ execution.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This also means that the Worker has no need to issue the Command to theTemporal Cluster. While Activity code isn't required to be deterministic, the fact that the Worker
reuses the result stored in the `ActivityTaskCompleted` Event from the original execution eliminates the possibility that an Activity could behave differently during History
Replay than it did originally.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The execution of each statement helps to restore the previous state of the Workflow.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

For example, the total gets recomputed.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

This logging statement is one of the things that behaves differently during replay. Temporal's logger is replay-aware, so it suppresses output during replay so that the logs
won't show duplicate messages.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Worker reaches the `workflow.Sleep` statement, it evaluates the Event History as it did with the Activity.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

StartTimer

Duration: 30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 It creates a Command

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

StartTimer

Duration: 30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 and then checks the Event History to see whether the Timer was started

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

StartTimer

Duration: 30 minutes

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 and fired during the previous execution.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 Since the history indicates that both of these things happened, the Worker does not issue the Command to the cluster.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

Workflow Task

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

At this point, the Worker has reached the point where the crash occurred, and replaying the code has completely restored the state of the Workflow prior to the crash

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

For example, the distance variable has the same value it did prior to the crash, which was originally returned by executing the `getDistance` Activity.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Since replay uses the same input data as before, this also means that the conditional statement on line 20 evaluates to `false`, just like it did before.

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

The same is true for the variable which was used to calculate the total price of the order.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

It has the same value it did as well.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker has now reached a statement __beyond__ where the crash occurred, which is evident because the Event History doesn't contain any Events related to this
Activity. Further execution of this Workflow continues on as is the crash had never happened.

Commands

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue
Respond Workflow

Task Complete

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Because it has encountered an `ExecuteActivity` call, the Worker completes the current Workflow Task,

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
getDistance
"orderNumber": "Z1238", ...

StartTimer

30 minutes

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task QueueIssue Command

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and issues a Command to the cluster, requesting execution of this Activity.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Activity Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster schedules an Activity Task.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Activity Task

Poll for Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Worker polls,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Activity Task

Dequeue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

it accepts the Activity Task

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Activity Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

and executes the code for this Activity.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue
Respond Activity
Task Complete

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When the Activity function returns a result, the Worker notifies the cluster,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

ActivityTaskCompleted (confirmation=...)

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

which logs an `ActivityTaskCompleted` Event.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 But since the cluster hasn't yet received a Command that says the Workflow Execution has completed or failed, the cluster schedules another Workflow Task to continue
progress of this execution.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Poll for Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The Worker polls the Task Queue,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Dequeue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled
WorkflowTaskStarted

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

accepts the Workflow Task,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Workflow Task

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

WorkflowTaskStarted

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 and resumes execution of the remaining Workflow code.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue
Respond Workflow

Task Complete

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

WorkflowTaskScheduled
WorkflowTaskStarted

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

When it reaches the end,

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

WorkflowTaskCompleted

WorkflowTaskScheduled
WorkflowTaskStarted

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

 it notifies that the cluster that the current Workflow Task is complete, and the cluster logs an Event to reflect this.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Workflow Task

Issue Command

CompleteWorkflowExecution

Result: "confirmationNumber":
 "TPD-26074139" WorkflowTaskCompleted

WorkflowTaskScheduled
WorkflowTaskStarted

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
sendBill
"customerID": 12983, ...

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

Since the Worker has now successfully completed the execution of the Workflow function, it issues a `CompleteWorkflowExecution` Command to the cluster, which
contains the result returned by this function.

Worker Process
Worker Entity

Temporal Client

Temporal Cluster

Task Queue

Commands

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
GetDistance
"OrderNumber": "Z1238", ...

StartTimer

30 minutes

Workflow Task

CompleteWorkflowExecution

Result: "ConfirmationNumber":
 "TPD-26074139"

ScheduleActivityTask

Queue:
Type:
Input:

pizza-tasks
SendBill
"CustomerID": 12983, ...

WorkflowTaskCompleted
WorkflowExecutionCompleted

WorkflowTaskScheduled
WorkflowTaskStarted

ActivityTaskCompleted (confirmation=...)

WorkflowTaskScheduled

Events
WorkflowExecutionStarted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskCompleted
TimerStarted
TimerFired
WorkflowTaskScheduled
WorkflowTaskStarted
WorkflowTaskTimedOut
WorkflowTaskScheduled
WorkflowTaskStarted

(getDistance)

(distance=15)

(30 Minutes)

WorkflowTaskCompleted
ActivityTaskScheduled (sendBill)
ActivityTaskStarted

const { sendBill, getDistance } = proxyActivities<typeof activities>({
 startToCloseTimeout: '5 seconds',
});

export async function pizzaWorkflow(order: PizzaOrder): Promise<string> {
 let distance: Distance | undefined = undefined;
 let totalPrice = 0;

 // compute distance
 distance = await getDistance(order.address);

 if (distance.kilometers > 25) {
 throw new ApplicationFailure('Customer too far away for delivery');
 }

 // Iterate over the items and calculate the cost of the order
 for (const pizza of order.items) {
 totalPrice += pizza.price;
 }

 log.info('Calculated cost of order', {});

 // Wait 30 minutes before billing the customer
 await sleep("30 minutes");

 // call a local function to create the input passed to next Activity
 const bill = createBill(order, totalPrice)

 const confirmation = await sendBill(bill);

 return(confirmation);
}

The cluster then logs `WorkflowExecutionCompleted` as the final Event in the history. The Workflow Execution has now closed.

Why Temporal Requires
Determinism for Workflows

In Temporal 101, we mentioned that Workflow code must be deterministic. I'm going to explain not only what that means, but also why it's important, but first I want to
reiterate a few important details about Workflow Execution to provide some context for this explanation.

Workflow Definition
import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

Let’s take a look at this workflow definition.

Workflow Definition
import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

Commands

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: runDailyReport

As a Worker executes the code in your Workflow Definition, it creates Commands and issues them to a Temporal Cluster to request various operations, such as the
execution of an Activity or the starting of a Timer.

The cluster maintains the Event History of each Workflow Execution.

import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

Commands Events
Workflow Definition

TimerStarted

ActivityTaskScheduled

ActivityTaskScheduled

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: runDailyReport

Certain Events in the history are a direct result of a particular Command issued by a Worker.

For example, the `ScheduleActivityTask` Command results in an `ActivityTaskScheduled` Event

[advance]

while the `StartTimer` Command results in a `TimerStarted` Event.

During Workflow Replay, the Worker uses this information to recover the

state of the previous execution.

Commands

ScheduleActivityTask ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

Events

Activity Execution

result is stored in

this Event

For example, if the `ScheduleActivityTask` Command has a corresponding

[advance]

`ActivityTaskScheduled` Event in the history, and this is followed by

[advance]

`ActivityTaskStarted` and

[advance]

`ActivityTaskCompleted`

 Events for that same

Activity Type, it's clear that this Activity already ran successfully. In this case, the Worker does not issue the Command to the cluster

requesting a new execution of the Activity.

[advance]

Instead, it assigns the

result of the previous Activity Execution, which is stored in the Event

History.

Temporal requires that the code in your Workflow Definition behaves deterministically when executed.

In Temporal 101, we explained this by saying that it must produce the

same output each time, given the same input. This explanation was

sufficient for that point in your journey to learn Temporal, but you now

know enough about Workflow Execution to understand the precise

definition.

Commands

ScheduleActivityTask

StartTimer

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled

TimerFired

TimerStarted

Events

Activity Execution

result is stored in

this Event

The same thing is true for timers.

• A Workflow is deterministic if every execution of its Workflow Definition:

• produces the same Commands

• in the same sequence

• given the same input

Deterministic Workflows:

Temporal's ability to guarantee durable execution  
of your Workflow depends on deterministic Workflows.

A Workflow is deterministic if every execution of its Workflow Definition:

produces the same Commands

in the same sequence

given the same input

Temporal's ability to guarantee durable execution of your Workflow depends on deterministic Workflows.

Workflow Definition
import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

You've already learned that Temporal uses Workflow Replay to recover the state of a Workflow Execution. It does this if the Worker crashes, but it may also do this at
other, less predictable times,

Workflow Definition
import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

Commands

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: runDailyReport

As you've seen, the Worker checks whether a Command created by replaying of the code…

Commands EventsWorkflow Definition

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

TimerFired

TimerStarted (4 hours)

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (runDailyReport)

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: runDailyReport

import { proxyActivities, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof
activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 // Sleep for 4 hours
 await sleep("4 hours");

 // Execute RunDailyReport activity
 await runDailyReport();
}

has a corresponding Event in the history, which it uses to determine whether the previous execution reached this point in the code.

Events from History

ActivityTaskScheduled importSalesData

TimerStarted 4 hours

ActivityTaskScheduled runDailyReport

Commands Generated

ScheduleActivityTask
Type: importSalesData

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: runDailyReport

If a specific Command results in a specific type of Event, then it follows that the reverse is also true. In other words, given one of these Events, you can determine which
Command led to that Event.

Commands Expected

ActivityTaskScheduled importSalesData

TimerStarted 4 hours

ActivityTaskScheduled runDailyReport

Events from History

ScheduleActivityTask
Type: importSalesData

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: runDailyReport

The Worker uses this logic to evaluate the Event History during replay and validate that it can reliably recover the Workflow Execution.

Events that are the direct result of Commands, shown here on the left, are used to create a list of Commands expected during replay.

A mismatch between the Commands that the Worker expected, based on the Event History, and those created, based on actually executing the code, results in a non-
deterministic error. This error means that the Worker cannot accurately restore the state of the Workflow Execution.

Example of a  
Non-Deterministic Workflow

To better understand the determinism requirement, it's helpful to look at a Workflow Definition that violates it. In this case, we'll use one that uses a random number
generator.

Commands Created Relevant Events LoggedA Non-Deterministic Workflow Definition
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Imagine that the following Workflow Definition is being executed. The first part behaves deterministically, because the lines above the highlighted one don't result in any
Commands. The highlighted line does, but it should result in exactly the same Command generated each time it's executed.

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Commands Created Relevant Events LoggedA Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: importSalesData

In this case, let's say that execution is successful,

Commands Created

ScheduleActivityTask
Type: importSalesData

Relevant Events Logged

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

A Non-Deterministic Workflow Definition
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

so the cluster logs the three Events shown into the history.

Commands Created Relevant Events Logged

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

A Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: importSalesData

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Next, there’s a conditional statement, which evaluates the value of a randomly-generated number.

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Commands Created Relevant Events Logged

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

A Non-Deterministic Workflow Definition

Happens to return 84 during this execution
ScheduleActivityTask
Type: importSalesData

Let's say that the random number generator happens to return the value 84 during this execution. Since the expression evaluates to true, execution continues with the
next line.

Commands Created Relevant Events LoggedA Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: importSalesData ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

This contains a `sleep` statement,

Commands Created Relevant Events LoggedA Non-Deterministic Workflow Definition

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

so the Worker issues a Command to the cluster, requesting that it starts a Timer.

Commands Created Relevant Events LoggedA Non-Deterministic Workflow Definition

StartTimer
Duration: 4 hours TimerFired

TimerStarted (4 hours)

ScheduleActivityTask
Type: importSalesData ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

The cluster starts the Timer, logs an Event, and then logs another Event when the Timer fires.

Commands Created Relevant Events Logged

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (ImportSalesData)

TimerFired

TimerStarted (4 hours)

A Non-Deterministic Workflow Definition

Worker crashes here

StartTimer
Duration: 4 hours

ScheduleActivityTask
Type: importSalesData ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Now imagine that the Worker happens to crash once it reaches the next line, so another Worker takes over, using replay to restore the current state before continuing
execution of the lines that follow.

Relevant History Events

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

TimerFired

TimerStarted (4 hours)

A Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: ImportSalesData

Duration:

StartTimer
4 hours

Commands Expected
(Based on History)

Commands Created

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

By evaluating the Event History, the Worker determines the expected sequence of Commands needed to restore the current state.

Relevant History Events

TimerFired

TimerStarted (4 hours)

Commands Created

ScheduleActivityTask
Type: importSalesData

A Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: ImportSalesData

StartTimer
4 hours

Commands Expected
(Based on History)

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

As it executes the code during replay, it reaches the first `activity` call, and creates a `ScheduleActivityTask` Command.

Relevant History Events

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (ImportSalesData)

TimerFired

TimerStarted (4 hours)

Commands Created

ScheduleActivityTask
Type: ImportSalesData

A Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: importSalesData

StartTimer
4 hours

Commands Expected
(Based on History)

ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

This Command matches the one expected based on the Event History. It’s not only the right type of Command, with the same details, but it also occurs at the right
position in the sequence of expected Commands. Therefore, the replay proceeds.

A Non-Deterministic Workflow Definition Relevant History Events

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (ImportSalesData)

TimerFired

TimerStarted (4 hours)

Commands Created

ScheduleActivityTask
Type: ImportSalesData

ScheduleActivityTask
Type: ImportSalesData

StartTimer
4 hours

Commands Expected
(Based on History)

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

It now reaches the conditional statement with the random number generator.

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

Relevant History Events

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (ImportSalesData)

TimerFired

TimerStarted (4 hours)

Commands CreatedA Non-Deterministic Workflow Definition

ScheduleActivityTask
Type: ImportSalesData

StartTimer
4 hours

Commands Expected
(Based on History)

Happens to return 14 during this execution
ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

ScheduleActivityTask
Type: importSalesData

The random number generator happens to return 14 in this case, so the conditional expression evaluates to false, and execution skips over the next line.

A Non-Deterministic Workflow Definition Relevant History Events

TimerFired

TimerStarted (4 hours)

Commands Created

ScheduleActivityTask
Type: ImportSalesData

ScheduleActivityTask
Type: ImportSalesData

StartTimer
4 hours

Commands Expected
(Based on History)

ScheduleActivityTask
Type: runDailyReport

import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

Eventually, the Workflow requests execution of another Activity, so the Worker creates another `ScheduleActivityTask` Command.

A Non-Deterministic Workflow Definition Relevant History Events

TimerFired

TimerStarted (4 hours)

Commands Created

StartTimer
4 hours

Commands Expected
(Based on History)

ScheduleActivityTask
Type: ImportSalesData

ScheduleActivityTask
Type: runDailyReport

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)
import { proxyActivities, log, sleep } from '@temporalio/workflow';

// Set up the activities with their options
const { importSalesData, runDailyReport } = proxyActivities<typeof activities>({
 startToCloseTimeout: '45 minutes',
});

export async function deterministicWorkflow(): Promise<void> {
 // Execute ImportSalesData activity
 await importSalesData();

 if (getRandomNumber(1, 100) >= 50) {
 await sleep("4 hours");
 }

 log.info("Preparing to run daily report", {});

 // Execute RunDailyReport activity
 await runDailyReport();
}

// middle square method
function getRandomNumber(min:number, max:number) {
 let seed = 1234;
 seed = Math.floor(((seed * seed) % 10000) / 100);
 return min + seed % (max - min + 1);
}

However, this is a different Command than it expected to find at this position in the history.

A Non-Deterministic Workflow Definition Relevant History EventsCommands Created

Using random numbers in a Workflow Definition has resulted in Non-Deterministic Error

TimerFired

TimerStarted (4 hours)

StartTimer
4 hours

Commands Expected
(Based on History)

ScheduleActivityTask
Type: ImportSalesData

ScheduleActivityTask
Type: runDailyReport

ScheduleActivityTask
Type: importSalesData

ScheduleActivityTask
Type: importSalesData

ActivityTaskStarted

ActivityTaskCompleted

ActivityTaskScheduled (importSalesData)

Since the Workflow Definition produced a different sequence of Commands during replay than it did prior to the crash, the Worker is unable to restore the previous state,
so the use of random numbers in the Workflow code has resulted in a non-deterministic error.

Each time a particular Workflow Definition is executed
with a given input, it must yield exactly the same

commands in exactly the same order.

As a developer, it's important to understand that the Workflow code you write can not catch or handle non-deterministic errors. Instead, you must recognize and avoid
the problems that cause them.

Common Sources of  
Non-Determinism

Let’s look at some of the most common sources of non determinism.

• Accessing external systems, such as databases or network services
• Instead, use Activities to perform these operations

• Writing business logic or calling functions that rely on system time
• Instead, use Workflow-safe functions like sleep

• Iterating over data structures with unknown ordering

• Storing or Evaluating the Run ID of a Workflow Execution

Things to Avoid in a Workflow Definition

Here are some things you can do to avoid causing determinism problems

Avoid accessing external systems, such as databases or network services. Do these things in your Activities instead.

Avoid writing business logic or calling functions that rely on system time.

Avoid iterating over data structures with unknown ordering.

Avoid storing or evaluating the Run ID of a Workflow Execution

Certain operations in Temporal, such as a Workflow Execution that uses

Continue-as-New to avoid exceeding limits on Event History size, result in a new run of that same execution. In this case, each run will have the same Workflow ID but
will have a unique Run ID.

• The TypeScript SDK runs your code in a sandbox that will help you check
for non-deterministic code

• The code is bundled on Worker creation using Webpack, and can import
any package as long as it does not reference Node.js or DOM APIs

• To make the Workflow runtime deterministic, functions
like Math.random(), Date, and setTimeout() are replaced by
deterministic versions

TypeScript SDK Workflow Sandbox

The TypeScript SDK runs your code in a sandbox that will help you check for non-deterministic code

The code is bundled on Worker creation using Webpack, and can import any package as long as it does not reference Node.js or DOM APIs

To make the Workflow runtime deterministic, functions like Math.random(), Date, and setTimeout() are replaced by deterministic versions

How Workflow Changes Can
Lead to Non-Deterministic Errors

There are other kinds of changes that can lead to non deterministic errors.

Non-Deterministic Code Isn't the Only Danger

• As you've just learned, non-deterministic code can cause problems
• However, there's also another source of non-deterministic errors that’s more subtle…

• Consider the following scenario
• You deploy and execute the following Workflow, which calls three Activities...

shipProduct

chargeCustomer

sendEmail

As you've just learned, non-deterministic code can cause problems. But there’s another problem that’s more subtle. Imagine you’ve deployed and execute the following
Workflow that calls three activities in sequence: 
 
shipProduct

chargeCustomer

sendEmail

Deployment Leads to Non-Deterministic Error

• While that Workflow is running, you decide to update the code
• You now want to charge the customer before shipping the product

• You deploy the updated code and restart the Worker(s) so that the change takes effect

• What happens to the open execution when you restart the Worker?

shipProduct

chargeCustomer

sendEmail

Before After

shipProduct

sendEmail

chargeCustomer

While that workflow is running, you decide to update the code and change the order of the activities. You decide to charge the customer first before shipping the product.
What happens to the open executions when you restart the workers to deploy your changes?

Ask the learners out loud and see if anyone can reason through it, based on what they've learned, to come up with the correct answer.

What happens is that the Worker uses History Replay to reconstruct the state of the open execution from just prior to the restart. However, if the Event History indicates
that its first Activity (shipProduct) has already been started, this will result in a non-deterministic error. Why? Because the updated code produced a different sequence of
Commands than the original code did, so it's impossible to recreate the original state with the new version of the code.

Deployment Leads to Non-Deterministic Error

• Problem: Worker cannot restore previous state with the updated code

• How to detect?
• Test changes by replaying history of previous 

executions using new code before deploying

• Only necessary if there are open executions 
at time of deployment

• How to solve?
• Versioning with the Patch API

• Worker Versioning

You can test for this by replaying the history of your previous executions using your new code before you deploy. You can download the history from the Web UI or from
the command line client and then create tests that play this back.

Once you’ve determined the problem, you can solve it by using the Patch API to change running workflows, or by using the Worker Versioning feature, and although we
don't have time to cover that during the live version of Temporal 102, you can read about it in our documentation (or in the upcoming online version of this course.

00. About this Workshop

01. Understanding Key Concepts in Temporal

02. Improving Your Temporal Application Code

03. Using Timers in a Workflow Definition

04. Testing Your Temporal Application Code

05. Understanding Event History

06. Debugging Workflow History

07. Deploying Your Application to Production

08. Understanding Workflow Determinism

09. Conclusion

Temporal 102

• Temporal applications contain code that you develop

• Workflow and Activity Definitions, Worker Configuration, etc.

• Temporal applications also contain SDK-provided code

• Such as the implementations of the Worker and Temporal Client

• Temporal guarantees durable execution of Workflows

• If the Worker crashes, another Worker uses History Replay to
automatically recreate pre-crash state, then continues execution

• From the developer perspective, it's as if the crash never even happened

Essential Points (1)

Temporal applications contain code that you develop, including your Workflow and Activity Definitions, Worker Configuration, etc.

Temporal applications also contain SDK-provided code such as the implementations of the Worker and Temporal Client

Temporal guarantees durable execution of Workflows,

If the Worker crashes, another Worker uses History Replay to automatically recreate pre-crash state, then continues execution.

From the developer perspective, it's as if the crash never even happened

• Temporal Cluster / Cloud perform orchestration via Task Queues

• A Worker polls a Task Queue, accepts a Task, executes the code, and reports back with status/results

• Communication takes place by Workers initiating requests via gRPC to the Frontend Service

• Key point: Execution of the code is external to Temporal Cluster / Cloud

• As Workers run your code, they send Commands to Temporal Cluster/Cloud

• For example, when encountering calls that execute Activities or calls to create Timers with sleep,  
or when returning a result from the Workflow Definition

• Commands sent by the Worker lead to Events logged by Temporal Cluster / Cloud

Essential Points (2)

Temporal Cluster / Cloud perform orchestration via Task Queues

A Worker polls a Task Queue, accepts a Task, executes the code, and reports back with status/results

Communication takes place by Workers initiating requests via gRPC to the Frontend Service

Key point: Execution of the code is external to Temporal Cluster / Cloud

As Workers run your code, they send Commands to Temporal Cluster/Cloud

For example, when encountering calls that execute Activities or calls to create Timers with sleep,  
or when returning a result from the Workflow Definition

Commands sent by the Worker lead to Events logged by Temporal Cluster / Cloud

• The Event History documents the details of a Workflow Execution

• It's an ordered append-only list of Events

• Temporal enforces limits on the size and item count of the Event History

• Every Event has three attributes in common: ID, timestamp, and type

• They will also have additional attributes, which vary by Event Type

• Examining the Event History and attributes of individual Events can help you debug Workflow Executions

Essential Points (3)

The Event History documents the details of a Workflow Execution

It's an ordered append-only list of Events

Temporal enforces limits on the size and item count of the Event History

Every Event has three attributes in common: ID, timestamp, and type

They will also have additional attributes, which vary by Event Type

Examining the Event History and attributes of individual Events can help you debug Workflow Executions

• A single Workflow Definition can be executed any number of times

• Each time potentially having different input data and a different Workflow ID

• At most, one open Workflow Execution with a given Workflow ID is allowed per Namespace

• This rule applies to all Workflow Executions, not just ones of the same Workflow Type

• Once started, Workflow Execution enters the Open state

• Execution typically alternates between making progress and awaiting a condition

• When execution concludes, it transitions to the Closed state

• There are several subtypes of Closed, including Completed, Failed, and Terminated

Essential Points (4)

A single Workflow Definition can be executed any number of times

Each time potentially having different input data and a different Workflow ID

At most, one open Workflow Execution with a given Workflow ID is allowed per Namespace

This rule applies to all Workflow Executions, not just ones of the same Workflow Type

Once started, Workflow Execution enters the Open state

Execution typically alternates between making progress and awaiting a condition

When execution concludes, it transitions to the Closed state

There are several subtypes of Closed, including Completed, Failed, and Terminated

• Temporal requires that your Workflow code is deterministic

• This constraint is what makes durable execution possible

• Temporal's definition of determinism: Every execution of a given Workflow Definition must produce an
identical sequence of Commands, given the same input

• Non-deterministic errors can occur because of something inherently non-deterministic in the code

• Can also occur after deploying a code change that changes the Command sequence, if there were
open executions of the same Workflow Type at the time of deployment

• Activities are used for code that interacts with the outside world

• Activity code isn't required to be deterministic (but it should be idempotent)

• Activities are automatically retried upon failure, according to a configurable Retry Policy

Essential Points (5)

Temporal requires that your Workflow code is deterministic

This constraint is what makes durable execution possible

Temporal's definition of determinism: Every execution of a given Workflow Definition must produce an identical sequence of Commands, given the same input

Non-deterministic errors can occur because of something inherently non-deterministic in the code

Can also occur after deploying a code change that changes the Command sequence, if there were open executions of the same Workflow Type at the time of
deployment

Activities are used for code that interacts with the outside world

Activity code isn't required to be deterministic (but it should be idempotent)

Activities are automatically retried upon failure, according to a configurable Retry Policy

• Recommended best practices for Temporal app development

• Use objects (not individual fields) as input/output of your Workflow and Activity definitions

• Be aware of the platform's limits on Event History size and item count

• Replace non-deterministic code in Workflow Definitions with Workflow-safe counterparts

• Use Temporal's replay-aware logging API

Essential Points (6)

Recommended best practices for Temporal app development

Use objects (not individual fields) as input/output of your Workflow and Activity definitions

Be aware of the platform's limits on Event History size and item count

Replace non-deterministic code in Workflow Definitions with Workflow-safe counterparts

Use Temporal's replay-aware logging API

• We don't dictate how to build, deploy, or run Temporal applications

• Typical advice: Build, deploy, and run as you would any other application in that language

• However, we recommend running >= 2 Workers per Task Queue (availability/scalability)

Essential Points (7)

We don't dictate how to build, deploy, or run Temporal applications

Typical advice: Build, deploy, and run as you would any other application in that language

However, we recommend running >= 2 Workers per Task Queue (availability/scalability)

Unpublished version - TW20220829a
275

Thank You

