

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Logistics

* Introductions
e Schedule
 Facilities

 WiFi

Course conventions ("workflow" vs. "Workflow")

Asking questions

Getting help with exercises

During this course, you will

Learn the basic architecture of the Temporal platform

Develop and execute Workflows and Activities using the Go SDK
« Use the Web Ul to gain insight into current and previous executions

 Experiment with failures and retries

Understand how a Temporal cluster orchestrates execution

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Introducing Temporal

« The Temporal Platform is a durable execution system for your code

 Temporal applications are created using Workflows
* Like other applications, you develop them by writing code
 The code you write is the code that is executed at runtime
* Unlike other applications, Temporal Workflows are resilient

 They can run for years, surviving both server and application crashes

What is a Workflow?

 Conceptually, a workflow is a sequence of steps

 You probably have experience with workflows from everyday life
* Using a mobile app to transfer money
* Buying concert tickets
* Booking a vacation
e Ordering a pizza

* Filing an expense report

Workflow Example: Expense Report

Employee
Yes
O—v Create ki Complete? Submit Retry? Mo O
Report Expenses
NO F 3
Manager
v
No .
: Notify of
?
{ Review Approve? [Rejection]
Yes
Accounting p ~
. Notify of

Approval
. J
[Reimburse}—
4)

Archive —>Q

\ 4

Workflow Example: Reimbursement

Reimburse

[Withdraw $100 1 I Deposit $100]
(J L

from company account) (into employee account)

Correctness requires exactly-once execution

This Workflow Is a Distributed System

()

func MoneyTransfer(data PaymentDetails) string {

bank := BankingService{"bank-api.example.com"}
—1) y

confirmationl := bank.Withdraw(data.SourceAccount, data.Amount)

confirmation2 := bank.Deposit(data.TargetAccount, data.Amount)

*A

return generateSuccessMessage(confirmationl, confirmation2)

Correctness requires
exactly-once execution

Failure Mitigation: Retries

The same code, after
adding support for retries

(

.

func MoneyTransfer(data PaymentDetails) string {
bank := BankingService{"bank-api.example.com"}

const MAX_RETRY_ATTEMPTS = 100
var confirmationl = ""

for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmationl = doWithdraw(bank, data.SourceAccount, data.Amount)

if confirmationl != "FAIL" {
break
}
I
if confirmationl == "" || confirmationl == "FAIL" {
return "FAIL: could not withdraw money from source account"
}

var confirmation2 = ""
for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmation2 = doDeposit(bank, data.TargetAccount, data.Amount)

if confirmation2 != "FAIL" {
break
}
b
if confirmation2 == "" || confirmation2 == "FAIL" {
return "FAIL: could not deposit money into target account"
¥

return generateSuccessMessage(confirmationl, confirmation2)

func doWithdraw(bank BankingService, account string, amount int) string {
return bank.Withdraw(account, amount)

b

func doDeposit(bank BankingService, account string, amount int) string {
return bank.Deposit(account, amount)

b

Failure Mitigation: Compensations

After adding code to recover
from a failed deposit

(

.

func MoneyTransfer(data PaymentDetails) string {
bank := BankingService{"bank-api.example.com"}

const MAX_RETRY_ATTEMPTS = 100
var confirmationl = ""

for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmationl = doWithdraw(bank, data.SourceAccount, data.Amount)

if confirmationl != "FAIL" {
break
}
}
if confirmationl == "" || confirmationl == "FAIL" {
return "FAIL: could not withdraw money from source account"
}

var confirmation2 = ""
for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmation2 = doDeposit(bank, data.TargetAccount, data.Amount)

if confirmation2 != "FAIL" {
break
}
}
if confirmation2 == "" || confirmation2 == "FAIL" {
log.Println("Deposit failed, attempting to re-deposit money into source account")
var confirmation3 = ""
for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmation3 = doDeposit(bank, data.SourceAccount, data.Amount)
if confirmation3 != "FAIL" {
return "Transfer failed; re-deposited funds into source account"
}
}
TODO:
}

return generateSuccessMessage(confirmationl, confirmation2)

func doWithdraw(bank BankingService, account string, amount int) string {
return bank.Withdraw(account, amount)

}

func doDeposit(bank BankingService, account string, amount int) string {
return bank.Deposit(account, amount)
}

Failure Mitigation: Timeouts

After adding support for
request timeouts

' func MoneyTransfer(data PaymentDetails) string {
bank := BankingService{"bank-api.example.com"}

const MAX_RETRY_ATTEMPTS = 100
const TIMEOUT_SECONDS = 3 x time.Second

var confirmationl = ""
for attempt := @; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmationl = doWithdraw(bank, data.SourceAccount, data.Amount, TIMEOUT_SECONDS

if confirmationl != "FAIL" && confirmationl != "TIMEOUT" {
break
¥
¥
if confirmationl == "" || confirmationl == "FAIL" {
return "FAIL: could not withdraw money from source account"
}

var confirmation2 =
for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmation2 = doDeposit(bank, data.TargetAccount, data.Amount, TIMEOUT_SECONDS)

if confirmation2 != "FAIL" && confirmation2 != "TIMEOUT" {
break
b
¥
if confirmation2 == "" || confirmation2 == "FAIL" {
log.Println("Deposit failed, attempting to re-deposit money into source account")
var confirmation3 = ""
for attempt := 0; attempt <= MAX_RETRY_ATTEMPTS; attempt++ {
confirmation3 = doDeposit(bank, data.SourceAccount, data.Amount, TIMEOUT_SECONDS)
if confirmation3 != "FAIL" && confirmation3 != "TIMEOUT" {
return "Transfer failed, but successfully re-deposited funds into source account"
}
}
TODO:
¥

return generateSuccessMessage(confirmationl, confirmation2)

func doWithdraw(bank BankingService, account string, amount int, timeout time.Duration) string {
wdReqChannel make (chan string, 1)
go func() {
wdReqChannel <- bank.Withdraw(account, amount)
0

select {

case confirmation := <-wdReqChannel:
return confirmation

case <-time.After(timeout):
return "TIMEOUT"

}

func doDeposit(bank BankingService, account string, amount int, timeout time.Duration) string {
depReqChannel := make(chan string, 1)
go func() {
depReqChannel <- bank.Deposit(account, amount)
()

select {

case confirmation := <-depReqChannel:
return confirmation

case <-time.After(timeout):
return "TIMEOUT"

¥

.

Architectural Overview: Temporal Server

 Consists of multiple services

Each service is horizontally scalable
The frontend service is an API gateway

Clients are external to the server and
interact only with the frontend service

CLI

|

Web Ul

Your
App

|

|

Backend Services

:| Clients

Temporal
Server

Architectural Overview: Temporal Cluster

 Temporal Cluster is a complete system

It is a deployment of the Temporal Server
software and the components used with it

* A database is a required component

* Persists Workflow state and Event History

* Also stores data for durable timers and queues

Elasticsearch is an optional component

* Improves performance when using advanced
search capabilities to locate information about
specific Workflow Executions

Temporal
Cluster

CLlI

|

Web Ul

|

Your
App

|

Backend Services

Database

Architectural Overview: Workers

Application Servers
 Temporal Cluster does not execute your code

» It orchestrates the execution of your code Q Q Q Q

Worker | | Worker | | Worker | | Worker
#1 #2 #3 #N
 Workers execute your code

* They are part of your application

« They coordinate with the Temporal Cluster L : - &

e |t's common to run them on multiple servers .

Temporal Cluster

Options for Running a Temporal Cluster

e Self-Hosted

e Using Docker Compose is common for development
« The new temporal command provides an even easier way of running a development cluster

* Production deployments often run on Kubernetes

 Temporal Cloud

» Access to a Temporal Cluster run by experts via our fully-managed cloud service
* Dependable: 99.9% uptime SLA and 24x7 production support

* Frees your organization from having to plan, deploy, and operate your own cluster

* Your application runs on your own infrastructure

Temporal Clusters for Development (1)

 The exercise environment for this workshop is already set up for you

» |t uses the GitPod service to deploy a cluster and browser-based development environment

 I'll briefly explain two ways to set up your own

* These are for reference, so you can experiment on your own after this workshop

Temporal Clusters for Development (2)

 Docker Compose was historically the most popular option
» Temporal provides a GitHub repository with various Docker Compose configurations
e This runs all of the necessary services within Docker containers

* |t requires that you have already installed Docker and Docker Compose

$ git clone https://github.com/temporalio/docker—-compose.git

$ cd docker—-compose

$ docker-compose up

Temporal Clusters for Development (2)

« The new temporal CLI is the fast & easy way to run a development cluster

Install this CLI tool (on a Mac; see docs for other systems)

$ brew install temporal

Start a development cluster (using default settings)

$ temporal server start-dev

Start a development cluster (specifying path for durable storage and a custom Web Ul port)

$ temporal server start-dev \

——db-filename /Users/twheeler/dev/mycluster.db \
——ui-port 8080

Temporal Software Development Kit (SDK)

 Temporal Workflows are defined in a standard programming language
A Temporal SDK is a language-specific library used to build Temporal applications
* You will use the APIs it provides when developing Workflows and Worker Programs

* We currently offer SDKs for several languages

$ go get go.temporal.io/sdk

This command installs the Temporal SDK for Go

Temporal Command-Line Interface (tctl)

« tctl is provides a CLI for interacting with a Temporal cluster

You'll use it to start a Workflow
in this workshop, but it has many
other capabilities

Append --help to any command
or subcommand to see usage info

See documentation for installation
instructions

This will soon be superseded by the
temporal command

$ tctl ——help
NAME :
tctl — A command-line tool for Temporal users

USAGE:
tctl [global options] command [command options...

VERSION:
1.18.0

COMMANDS:
namespace, n Operate Temporal namespace
workflow, wf Operate Temporal workflow
activity, act Operate activities of workflow

Exercise Environment

 We provide a development environment for you in this course
* [t uses the GitPod service to deploy a private cluster, plus a code editor and terminal

* You access it through your browser (may require you to log in to GitHub)

* Your instructor will now demonstrate how to launch and use the environment

* Please follow along, so your environment will be ready for your first exercise

https://t.mp/replay—-101-go-code

https://t.mp/replay-101-go-code

GitPod Overview

File browser
source code
for exercises

Code editor

Embedded browser
(displays Temporal Web Ul)

eee [- [)] https://somegfandomly-assigned—hostname.gitpod.io e ®© M + 88
Simple Browser — temporal-101-go-code — G_itpod Covﬁ

EXPLORER main.go Simple Browser X M
@ v TEMPORAL-101-GO-CODE exercises > farewell-workflow > practice > start > -6o main.go > O O O https://some-randomly-assigned-hostname.gitpod.io O

> .scode 12 func main() {
> 5 exercises 13 c, err := client.Dial(client.Options{})

> samples 14 if err !=nil {

15 log.Fatalln("Unable to create client" Recent WOI’kﬂOWS @
> temporal-server 16 }
. default

$.bash_aliases 17 defer c.Close()

& .gitignore 18 Advanced Search RefreSh

I _gitpod.yml 19 options := client.StartWorkflowOptions{

T 20 ID: "greeting-workflow",

: 21 TaskQueue: "greeting-tasks" b tt
g0.50m 2 ' ution
LICENSE 23 All 4 4 f W b UI

® README.md 24 we, err := c.ExecuteWorkflow(context.Backi Or e
25 if err !=nil {
style.css
26 log.Fatalln("Unable to execute workfl uTC A
v
27 }
28 log.Println("Started workflow", "Workflow
29
30 var result string
31 err = we.Get(context.Background(), &resul
32 if err != nil {
33 log.Fatalln("Unable get workflow resu
34 }
35 log.Println("Workflow result:", result)
63 No Workflows Found
PROBLEMS (4 OUTPUT DEBUG CONSOLE TERMINAL JUPYTER +v A X
>] Set up aliases: basl|
. . BJs li bash
e .7 gitpod /workspace/temporal-101-go-code (main) $ [l (5] install staticcheck: bash
/S
. >| Go Get Fetcher: bash
2835dcbc@25e Pull complet
e r [Worker: sh
32.8s L 3] Terminal: bash
/workspace/temporal-101-go-cod \ Temporal Local Development Server:...
(S
waiting for server....
ZAOUTEINE Awaiting port 7233... ok
> TIMELINE Awaiting port 8080... ok
> 6o [
fomain O Go119% ®4A0 #& Share Layout: U.S. Ports: 7233, 8080, 8088 & [

AN 7
N /

Terminals

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Business Logic

7

i We Wi" begin With an example package app
* Input: string (a person's name) f”;gtﬁiﬁefggg“ig"ﬁ(2aﬂ:m:tfiﬂ?3 string {
L }
* Output: string (a greeting containing that name) L

* This is simply a Go function

* |tis not (yet) a Temporal Workflow

Executing the Business Logic

« We can write a small program to invoke that function

Input: string passed on command-line

Output: string returned by that function

7

package main

import (
1] fmt 1

Ilappll
IIOSII

)

func main() {
name := os.Args[1]
greeting := app.GreetSomeone(name)
fmt.Println(greeting)

$ go run start/main.go Donna

Hello Donna!

Workflow Definition

 With Temporal's Go SDK, you create a Workflow by writing a Go function
* The code for this function is known as a Workflow Definition
 Each Workflow has a name, known as its Workflow Type

* Inthe Go SDK, the Workflow Type is the name of the function (by default)

Writing a Workflow Function

* Three steps for turning a Go function into a Workflow Definition
1. Import the workflow package from the SDK
2. Add workflow.Context as the first input parameter

3. Update the return value to include an error (its value can be nil)

(h

package main ?
import (

"go.temporal.io/sdk/workflow" @ @
)

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
return "Hello " + name + "!", nil

}

\. J

Input Parameters and Return Values

« Temporal stores the history of your Workflow Executions
« Allows you to view input / output of running and completed Workflows

» Also affects how you will design your Workflows

* Input parameters and return values must be serializable
« Allowed: Null values, binary data, and anything serializable via JSON or Protocol Buffers

* Prohibited: Channels, functions, and unsafe pointers

« Avoid passing in or returning large amounts of data from your Workflow

 May rapidly expand the size of your Temporal Cluster's database

Initializing the Worker

 Workers execute your code

e How to initialize a Worker

1. Configure a Temporal Client, which
it uses to communicate with the
Temporal Cluster

2. Specify the name of a task queue
on the Temporal Cluster

3. Register the function(s) it will run

4. Begin polling the task queue so it
can find work to perform

r

import (
Ilappll
1 1Ogll
"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"

)

func main() {
C, err := client.Dial(client.Options{})‘<P—-<:>
if err !'= nil {
log.Fatalln("Unable to create client", err)

}
defer c.Close() @

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(app.GreetSomeone)~<———<:>

err = W.Run(worker.InterruptCh())<<———<:>

if err !'= nil {
log.Fatalln("Unable to start worker", err)

}

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Executing a Workflow from the Command Line

 One way to start a Workflow is with tctl workflow start
« The taskqueue value must match the value specified in your Worker initialization code
« The workflow_id is a user-defined identifier, which typically has some business meaning

« The 1nput argument's value is unmarshalled and passed as Workflow function parameter

$ tctl workflow start \
——workflow_type GreetSomeone \
——taskqueue greeting-tasks \
——workflow_id my-first-workflow \
——input '"Donna"'

Started Workflow Id: my-first—-workflow,
run Id: e8f9217e-344e-4T7b—-98bc-7703bc8c7c76

Starting the Worker Program

« Since Workers runs your code, there is no progress unless one is running

e After starting it, the Worker program
outputs a few lines and then appears

to do nothing $ go run worker/main.go
2023/09/10 11:12:39 INFO No logger configured for ...

2023/09/10 11:12:39 INFO Started Worker Namespace ...

 This is expected behavior, as it is
busy polling the task queue and
executing your code

 The Worker will keep running after
this Workflow completes, because it
then waits for more work to appear
In the task queue

Exercise #1: Hello Workflow

* During this exercise, you will
* Review the business logic of the provided Workflow Definition to understand its behavior
« Modify the Worker initialization code to specify a task queue name (greeting-tasks)
* Run the Worker initialization code to start the Worker process

« Use tctl to execute the Workflow from the command line, specifying your name as input

e Refer to the README.md file in the exercise environment for details

e The code is below the exercises/hello-workflow directory
« Make your changes to the code in the practice subdirectory (look for TODO comments)

 If you need a hint or want to verify your changes, look at the complete version in the solution subdirectory

Executing a Workflow from Application Code (1)

« An alternative to using tctl is to execute the Workflow from code

* This provides a way of integrating -
Temporal into your own applications package main
* You can do this in three steps e .
context
* Import the client package from the SDK ..igg..
. . "OS"
* Create and configure a client "go.temporal.io/sdk/client" @

)
* Use the API to request execution

func main() {
e \We will use similar code to run c, err := client.Dial(client.Options{}) @

. . if err != nil {
Workflows in later exercises log.Fatalln("Unable to create client", err)

¥
defer c.Close()

// example continues on next slide

Executing a Workflow from Application Code (2)

// continued from previous slide

options := client.StartWorkflowOptions{
ID: "my-first-workflow",
TaskQueue: "greeting-tasks",

Iy
we, err := c.ExecuteWorkflow(context.Background(), options, app.GreetSomeone, os.Args[1])
if err != nil {
log.Fatalln("Unable to execute workflow", err)
Iy

log.Println("Started workflow", "WorkflowID", we.GetID(), "RunID", we.GetRunID())

var result string
err = we.Get(context.Background(), &result)
if err !'= nil {
log.Fatalln("Unable get workflow result", err)
Iy
log.Println("Workflow result:", result)

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Viewing Workflow History with tctl

$ tctl wf show ——workflow_id my-first-workflow

1 WorkflowExecutionStarted {WorkflowType:{Name:GreetSomeone},

ParentInitiatedEventId:0, TaskQueue:{Name:greeting-tasks,
Kind:Normal}, Input:["Donna"],
WorkflowExecutionTimeout:0s, WorkflowRunTimeout:@s,
WorkflowTaskTimeout:10s, Initiator:Unspecified,
OriginalExecutionRunId:e8f9217e-344e-4f7b-98bc-7703bc8c7c76,
Identity:tctl@twwmbp,
FirstExecutionRunId:e8f9217e-344e—-4f7b-98bc-7703bc8c7c76,
Attempt:1, FirstWorkflowTaskBackoff:0s,
ParentInitiatedEventVersion:0}

WorkflowTaskScheduled {TaskQueue:{Name:greeting-tasks,
Kind:Normal},
StartToCloseTimeout:10s,
Attempt:1}

WorkflowTaskStarted {ScheduledEventId:2, Identity:93592@twwmbpQ,
RequestId:10535889-9c10-4073-b38FT-4876bbae4db3,
SuggestContinueAsNew: false, HistorySizeBytes:0}

WorkflowTaskCompleted {ScheduledEventId:2, StartedEventId:3,
Identity:93592@twwmbp(@,
BinaryChecksum:202d5177234b6ec7b33e3delb92f2f5f}

WorkflowExecutionCompleted <{Result:["Hello Donna!"1],
WorkflowTaskCompletedEventId:4}

Viewing History from Web UI

« The Temporal Web Ul displays Workflow status and history

* [t's also a powerful tool for gaining insight into Workflow Execution

 The port number used to access it may vary by deployment type
 |f using Docker Compose on your laptop: http://localhost:8080/

* |n our GitPod environment, the Web Ul is shown in an embedded browser tab

* This tab is opened automatically, but there may be a short delay before it's displayed

Web Ul: Main Page

Change time display format

<5

Recent Workflows

f Filter criteria C
Navigation default - 3 workflows @
Toolbar | & |
| (wrme < |0 vc v | [100 4] « wsors
Status = Workflow ID = Type =
M Combleted order-number-75142 ProcessShipment
— P 2023-09-11 UTC 01:22:49.63 2023-09-11 UTC 01:22:50.07
M Combleted greeting-workflow GreetSomeone
— P 2023-09-11 UTC 01:21:01.50 2023-09-11 UTC 01:21:01.58
M Completed my-first-workflow GreetSomeone
— P 2023-09-10 UTC 15:45:42.07 2023-09-10 UTC 15:45:46.10
I T I

2
:
Table listing Workflow Executions

Web Ul

Workflow Execution Detall

Page

< Back to Workflows

completed My-first-workflow 4—@ Workflow ID

History 5 Workers 0 Pending Activities 0 Stack Trace Queries

% Summary @ Workflow Execution Details

I Workflow Type Task Queue Start & Close Time I
GreetSomeone (D greeting-tasks 0 Start Time: 2023-09-10 UTC 15:45:42.07
Run ID: 845284e7-8ab1-484d-9e25-011f4026aa42 D State Transitions: 3 Close Time: 2023-09-10 UTC 15:45:46.10

s%: Relationships OParent 0Pending Children O0First 0 Previous 0 Next

<> Input and Results ooy Input Data oy Output Data
I Input \?/ I IResuIts \\b

"Hello Donna!"

1-50f § k= Compact ‘ <[> JSON ‘ v Download]

Recent Events @ Event HiStOry

|
Date & Time - Workflow Events =
5 2023-09-10 UTC 15:45:46.10 WorkflowExecutionCompleted Result Payloads ESERSCRELIEIRS] D =3
4 2023-09-10 UTC 15:45:46.10 WorkflowTaskCompleted Scheduled Event ID 2 v
3 2023-09-10 UTC 15:45:46.09 WorkflowTaskStarted Scheduled Event ID 2 v
2 2023-09-10 UTC 15:45:42.07 WorkflowTaskScheduled Task Queue Name greeting-tasks v
1 2023-09-10 UTC 15:45:42.07 WorkflowExecutionStarted Workflow Type Name GreetSomeone v
. 7

Namespaces

« The Web Ul lists recent Workflow Executions within a given namespace

You can see the selected namespace (1) and switch among available namespaces (2)

« Namespaces are a means of isolation within a Temporal cluster

Used to logically separate Workflows according to your needs

* For example, by lifecycle (development vs. production) or department (Marketing vs. Accounting)

Some settings are applied at a per-namespace level

The default namespace is named default

v Workflows
& Schedules

5 Namespaces

“0O Archive

Recent Workflows

default - 3 workflows

2 Status =

\ Completed

Workflow ID =

generate-certificate-workflow

| Completed

greeting-workflow

| Completed

my-first-workflow

Exercise #2: Hello Web Ul

* During this exercise, you will
 Use the Temporal Web Ul to display the list of recent Workflow Executions
* \View the detail page for the Workflow Execution from the previous exercise

e See if you can find the following information on the detail page
 Name of the task queue

e Start time
* Close time (this is the time of completion)

* Input and output for this Workflow execution (hint: click the "</> Input and Results" section)

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Making Changes to a Workflow

« Backwards compatibility is an important consideration in Temporal

« Avoid changing the number or types of input parameters
* We recommend that your Workflow uses a struct as the only input parameter

* Changing the fields used to create the struct does not change its type

 You must also ensure that your Workflow is deterministic
e Each execution of a given Workflow must produce the same output, given the same input

* Tip: You can use Versioning to safely introduce major changes to a Workflow

Restarting the Worker Process

 Workers use caching for better performance

« After making changes, you must restart the Worker(s) before changes take effect

 The instructor will now demonstrate this

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

What Are Activities?

* Activities encapsulate business logic that is prone to failure
* They are executed during Workflow Execution

 If an Activity fails, it will be retried

» Activity Definitions are Go functions
* Rules for input and output types are the same as for Workflow Definitions
» Temporal does not impose a naming convention on the function name
* Does not have to be in same source file as Workflow, but can be if you prefer

« Although not required, we recommend passing context.Context as the first parameter

Registering Activities

 Like Workflows, Activities must also be registered with the Worker

* The process is similar, too

r
func main() {
c, err := client.Dial(client.Options{})
if err !'= nil {
log.Fatalln("Unable to create client", err)
b
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(app.GreetSomeone)
w.RegisterActivity(app.GreetInSpanish)

err = w.Run(worker.InterruptCh())
if err !'= nil {
log.Fatalln("Unable to start worker", err)
¥
¥
.

Executing Activities

r
package app

import (
"go.temporal.io/sdk/workflow"
"time"

)

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string

err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err
¥

return spanishGreeting, nil

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

How Temporal Handles Activity Failure

By default, Temporal automatically retries failed Activities forever

* Four properties determine the timing and number of retry attempts

* You can override one or more of these defaults with a custom Retry Policy

Description Default Value
InitialInterval Duration before the first retry 1 second
BackoffCoefficient |Multiplier used for subsequent retries 2.0
MaximumInterval Maximum duration between retries 100 *x Initiallnterval
MaximumAttempts Maximum number of retry attempts before giving up 0 (unlimited)

Activity Retry Policy Example

import (
"go.temporal.io/sdk/workflow"
"go.temporal.io/sdk/temporal" 4—@ Import this package from the SDK
"time"

)

func GreetSomeone(ctx workflow.Context, name string) (string, error) {

retrypolicy := &temporal.RetryPolicy { —
InitialInterval: 15 * time.Second, // first retry will occur after 15 seconds
BackoffCoefficient: 2.0, // double the delay after each retry
MaximumInterval: time.Second * 60, // up to a maximum delay of 60 seconds
MaximumAttempts: 100, // fail the Activity after 100 attempts
} —
options := workflow.ActivityOptions {
StartToCloseTimeout: time.Second * 5,
RetryPolicy: retrypolicy, ¢—— Associate the policy with the Activity options
}

ctx = workflow.WithActivityOptions(ctx, options)

var result string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &result)

// ... remainder of Workflow code would follow

Specify your
policy values

Exercise #3: Farewell Workflow

* During this exercise, you will
» Write an Activity function
* Register the Activity function

* Modify the Workflow to execute your new Activity

e Run the Workflow

 Refer to the README.md file In the exercise environment for details

* The code is below the exercises/farewell-workflow directory
« Make your changes to the code in the practice subdirectory (look for TODO comments)

 If you need a hint or want to verify your changes, look at the complete version in the solution subdirectory

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Actors in this Workflow Execution Scenario

Temporal Client Task Queus Temporal Client

Client Application

Executes the code Orchestrates code execution Requests code execution
and retrieves the result

Workers and Tasks

Temporal Client

T

@ Poll for Tasks

>

Temporal Cluster

Task Queue

<

@ Accept Task

 Temporal does not assign tasks to Workers

Activity
Task

* Workers continuously poll, accepting tasks when they have spare capacity

* You can increase throughput and scalability by adding Workers

Commands

Temporal Client > Task Queue
@ Command: @
Vi Activity
wf.ExecuteActivity(...) Schedule ACtIVIty Task Task

* Certain API calls result in the Worker issuing a Command to the Temporal Cluster
 The Cluster acts on these commands, but also stores them

* This allows the Worker to recreate the state of a Workflow Execution following a crash

Activity Definitions |

Workflow Definition \

E package farows1l

Activity Definitions

4__{7 package farewell // import statements omitted for brevity

Worker Initialization

_func GreetInSpanish(ctx context.Context, name string) (string, error) { J
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

}

[fqgé FarewellInSpanish(ctx context.Context, name string) (string, error) {|

‘greeting, err := callService("get-spanish-farewell", name)
return greeting, err

}

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err

AR This is just a utility function

body, err := ioutil.ReadAll(resp.Body) fOI’. Ca”ing the.r.niCI’OSGrVice
if err != nil { and is not specific to Temporal

return "", err
}

translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

H

return translation, nil

Activity Definitions

Workflow Definition

|
E package farows1l

Worker Initialization
| -

xxxxxxxxxxxxxxxxxxxxxx

package farewell

import (
n time n

"go.temporal.io/sdk/workflow"

)

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name)LGet(ctx, &spanishGreeting)
if err !'= nil {

return "", err

}

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, nameﬂ.Get(ctx, &spanishFarewell)
if err != nil {

return "", err

¥
var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

Activity Definitions

Worker Initialization

Workflow Definition \

| -

Worker Initialization
|

s/ Faremel1-mork low/solution”

package main

import (
Illogll
farewell "temporall@l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"

)

func main() {
c, err := client.Dial(client.Options{})
if err !'= nil {
log.Fatalln("Unable to create client", err)
}
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})
; w.RegisterWorkflow(farewell.GreetSomeone)

| w.RegisterActivity(farewell.GreetInSpanish)

M w.RegisterActivity(farewell.FarewellInSpanish)

err = w.Run(worker.InterruptCh())
if err !'= nil {
log.Fatalln("Unable to start worker", err)

by

Activity Definitions

Worker Initialization \
ﬁf

Launch

| package main|

import (

)

Illogll

farewell "temporall®l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"

ffunc main()l{

c, err := client.Dial(client.Options{})
if err != nil {
log.Fatalln("Unable to create client", err)
¥
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(farewell.GreetSomeone)
w.RegisterActivity(farewell.GreetInSpanish)
w.RegisterActivity(farewell.FarewellInSpanish)

err = w.Run(worker.InterruptCh())
if err !'= nil {

log.Fatalln("Unable to start worker", err)
¥

Task Queue

Activity Definitions

Workflow Definition

age farows1l

Worker Initialization \
5 .

)
deer c.Closal)

package main

import (
Illogll
farewell "temporall®l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"
)

func main() {
c, err := client.Dial(client.Options{})
if err !'= nil {
log.Fatalln("Unable to create client", err)
}
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(farewell.GreetSomeone)
w.RegisterActivity(farewell.GreetInSpanish)
w.RegisterActivity(farewell.FarewellInSpanish)

err = w.Run(worker.InterruptCh())
if err !'= nil {
log.Fatalln("Unable to start worker", err)

| Temporal Client |

Task Queue

Activity Definitions

"

package main

import (
Illogll
farewell "temporall®l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"

)

func main() {
c, err := client.Dial(client.Options{})
— if err != nil {
log.Fatalln("Unable to create client", err)

|
H package fazouell

}
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(farewell.GreetSomeone)
w.RegisterActivity(farewell.GreetInSpanish)
w.RegisterActivity(farewell.FarewellInSpanish)

Worker Initialization ‘ err = w.Run(worker.InterruptCh())
‘a

if err !'= nil {
i log.Fatalln("Unable to start worker", err)

Worker Entity

Task Queue

| Temporal Client |

Activity Definitions

"

package main

import (
Illogll
farewell "temporall®l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"

)

func main() {
c, err := client.Dial(client.Options{})
— if err != nil {
log.Fatalln("Unable to create client", err)

|
H package fazouell

}
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(farewell.GreetSomeone)
w.RegisterActivity(farewell.GreetInSpanish)
w.RegisterActivity(farewell.FarewellInSpanish)

Worker Initialization ‘ err = w.Run(worker.InterruptCh())
‘a

if err !'= nil {
i log.Fatalln("Unable to start worker", err)

Worker Entity

Task Queue

| Temporal Client |

Activity Definitions

Worker Initialization \
ﬁf

package main

import (
Illogll
farewell "temporall®l/exercises/farewell-workflow/solution"

"go.temporal.io/sdk/client"
"go.temporal.io/sdk/worker"
)

func main() {
c, err := client.Dial(client.Options{})
if err != nil {
log.Fatalln("Unable to create client", err)
¥
defer c.Close()

w := worker.New(c, "greeting-tasks", worker.Options{})

w.RegisterWorkflow(farewell.GreetSomeone)
w.RegisterActivity(farewell.GreetInSpanish)
w.RegisterActivity(farewell.FarewellInSpanish)

err = w.Run(worker.InterruptCh())
if err != nil {

log.Fatalln("Unable to start worker", err)
¥

Worker Entity

Poll Task Queue
| Temporal Client I P

Launching from Command Line

$ tctl workflow run \
——taskqueue greeting-tasks \
——workflow_id greeting-workflow \
——workflow_type GreetSomeone \
——input '"Tom"'

Workflow Definition |

Workflow
Execution
Request

Temporal Cluster

Worker Entit
" Poll Task Queue

Temporal Client >

Activity Definitions

Launching from Application Code

|
E package farows1l

// ... this is code within your own application (for example, a web application, mobile app, etc.)
c, err := client.Dial(client.Options{})
if err != nil {

log.Fatalln("unable to create Temporal client", err)
}
defer c.Close()

options := client.StartWorkflowOptions<{
ID: "greeting-workflow",
TaskQueue: "greeting-tasks",

}
we, err := c.ExecuteWorkflow(context.Background(), options, farewell.GreetSomeone, os.Args[1])
if err !'= nil {
log.Fatalln("Unable to execute workflow", err)
¥

log.Println("Started workflow", "WorkflowID", we.GetID(), "RunID", we.GetRunID())

var result string
err = we.Get(context.Background(), &result)
if err !'= nil {
log.Fatalln("Unable get workflow result", err)

}
log.Println("Workflow result:", result)
// ... other application-specific code might follow

Temporal Cluster Workflow Client Application

: Execution
Worker Entit
orer=my Poll Task Queue Request

| Temporal Client } P < I Temporal Client

Activity Definitions

Ststanents onitted for

nane string) (string, error) ¢
sh-rarenell, nane)

e string) (string, error) (

nama) ot (e,

name) et et

var hellogoadsye

return helloGooabye, nil

Worker Initialization \

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

Activity Definitions

Worker Initialization \
| -

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Workflow
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

Activity Definitions

Worker Initialization \
| -

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

Workflow
Task

>

<

Accept Task

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

Activity Definitions

Worker Initialization \
ﬁf

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client I P | Temporal Client |

Workflow
Task

Activity Definitions

Worker Initialization \
?f

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client I P | Temporal Client |

Workflow
Task

Activity Definitions

Worker Initialization \
?f

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err != nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

Temporal Cluster Client Application

Worker Entity Poll Task Queue
| Temporal Client I P | Temporal Client |
Command:
Schedule
Activity
Task

Activity Definitions

Worker Initialization \
|

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Activity
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)

Activity Definitions

Worker Initialization \
|

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

Activity
Task

<

>

Accept Task

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)

ActivityTaskStarted (Greeting)

Activity Definitions

|
a package farows1l

Worker Initialization
| -

// import statements and unused code omitted from this example

func GreetInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)
if err !'= nil {

return "", err
}

translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

}

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)

ActivityTaskStarted (Greeting)

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client } P | Temporal Client |

Activity
Task

Activity Definitions

|
a package farows1l

Worker Initialization
| -

// import statements and unused code omitted from this example

func GreetInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
¥
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

}

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)

ActivityTaskStarted (Greeting)

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client } > | Temporal Client |
Access microservice Activity
. Task
and request greeting

‘ Activity Definitions ‘ // import statements and unused code omitted from this example

func GreetInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)

|
E package farows1l

if err != nil {
return "", err

¥
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
¥
translation := string(body)

status := resp.StatusCode
if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)

xxxxxxxxxxxxxxxxxxxxxx

return "", errors.New(message)
Worker Initialization }
[-

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)

ActivityTaskStarted (Greeting)

Worker Entit
orker Entity Poll Task Queue

| Temporal Client } P | Temporal Client |

Translation service Activity

Translation

> Task

responds with greeting

Temporal Cluster Client Application

Activity Definitions

|
a package farows1l

Worker Initialization
| -

// import statements and unused code omitted from this example

func GreetInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
¥
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

}

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client } P | Temporal Client |

Notify Activity
Task Complete

Activity Definitions

Workflow Definition

a package fazouell

Worker Initialization \
e

)
deer c.Closal)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Workflow
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

Activity Definitions

"

Worker Initialization \
‘5)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

Workflow
Task

>

<

Accept Task

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

Activity Definitions

Worker Initialization \
?f

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err != nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client I P | Temporal Client |

Workflow
Task

Activity Definitions

I
a package farows1l

Worker Initialization \

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

Temporal Cluster Client Application

Worker Entity Poll Task Queue
| Temporal Client I P | Temporal Client |
Command:
Schedule
Activity
Task

Activity Definitions

"

Worker Initialization \
‘5)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Activity
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

Activity Definitions ‘

‘Ff

Worker Initialization
| -

What happens if the Worker crashes?

Worker Process

Temporal Cluster

Task Queue

Activity
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

Activity Definitions

"

Worker Initialization \
‘5)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

Activity
Task

>

<

Accept Task

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)

Activity Definitions

|
a package farows1l

Worker Initialization
| -

// import statements and unused code omitted from this example

func FarewellInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-greeting", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
¥
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

}

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

ActivityTaskStarted (Farewell)

Worker Process

Worker Entity

Temporal Cluster Client Application
Poll Task Queue

| Temporal Client } P | Temporal Client |

Activity
Task

Activity Definitions

|
E package farows1l

Worker Initialization
| -

rewel1-mork low/solution”

// import statements and unused code omitted from this example

func FarewellInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get-spanish-farewell", name)
return greeting, err

b

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)
if err !'= nil {

return "", err
}

translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

}

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

ActivityTaskStarted (Farewell)

Worker Process

Worker Entity

Temporal Cluster Client Application

Poll Task Queue
| Temporal Client } P | Temporal Client |
Access microservice Activity
Task
and request farewell

Activity Definitions

|
E package farows1l

Worker Initialization
| -

rewel1-mork low/solution”

Service Unavailable

// import statements and unused code omitted from this example
func FarewellInSpanish(ctx context.Context, name string) (string, error) {

greeting, err := callService("get-spanish-farewell", name)
if err != nil {
return "", err

return greeting, nil
¥

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err != nil {
return "", err
¥
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
}
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

¥

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

} Error

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client } P | Temporal Client |

Execution fails due Activity
.. Task

to service outage

Activity Definitions

<

Workflow Definition \

| -

Worker Initialization

|

packag main

s/ Faremel1-mork low/solution”

// import statements and unused code omitted from this example
func FarewellInSpanish(ctx context.Context, name string) (string, error) {
greeting, err := callService("get—spanish-farewell", name)
if err !'= nil {
return "", err - = = =
} Activity is invoked

return greeting, nil))
} again during retry
// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {

base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
}
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

¥

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)

Temporal Cluster Client Application
w Worker Entity Poll Task Queue
| Temporal Client I P | Temporal Client |

Access microservice Activity

“

Task

and request farewell

‘ Activity Definitions ‘ // import statements and unused code omitted from this example

greeting, err := callService("get-spanish-farewell", name)
return greeting, err
H

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)

|
E package farows1l

if err != nil {
return "", err

¥
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
¥
translation := string(body)

status := resp.StatusCode
if status >= 400 {

xxxxxxxxxxxxxxxxxxxxxx

return translation, nil

func FarewellInSpanish(ctx context.Context, name string) (string, error) {

message := fmt.Sprintf("HTTP Error %d: %s", status, translation)

return "", errors.New(message)
Worker Initialization }
[-

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)

Worker Entity

Translation

Poll Task Queue
| Temporal Client } g
Translation service | Activity
. w Task
responds with farewell

Client Application

| Temporal Client |

Activity Definitions

|
a package farows1l

Worker Initialization
| -

// import statements and unused code omitted from this example
func FarewellInSpanish(ctx context.Context, name string) (string, error) {

greeting, err := callService("get-spanish-farewell", name)
if err != nil {

return "", err
}

return greeting, nil
¥

// utility function for making calls to the microservices
func callService(stem string, name string) (string, error) {
base := "http://localhost:9999/" + stem + "?name=%s"
url := fmt.Sprintf(base, url.QueryEscape(name))

resp, err := http.Get(url)
if err !'= nil {
return "", err
}
defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err !'= nil {
return "", err
}
translation := string(body)

status := resp.StatusCode

if status >= 400 {
message := fmt.Sprintf("HTTP Error %d: %s", status, translation)
return "", errors.New(message)

¥

return translation, nil

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)
ActivityTaskCompleted (Farewell)

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client } P | Temporal Client |

Notify Activity
Task Complete

Activity Definitions

"

Worker Initialization \
‘5)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

>

Task Queue

Workflow
Task

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

ActivityTaskStarted (Farewell)

ActivityTaskCompleted (Farewell)

WorkflowTaskScheduled

Activity Definitions

"

Worker Initialization \
‘5)

Worker Process

Worker Entity

| Temporal Client

Poll

Temporal Cluster

Workflow
Task

>

<

Accept Task

Task Queue

Client Application

| Temporal Client |

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)

WorkflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Farewell)

ActivityTaskStarted (Farewell)

ActivityTaskCompleted (Farewell)

WorkflowTaskScheduled

WorkflowTaskStarted

Activity Definitions

|
E package farows1l

Worker Initialization

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)
ActivityTaskCompleted (Farewell)

WorkflowTaskScheduled

WorkflowTaskStarted

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client I P | Temporal Client |

Workflow
Task

Activity Definitions

I
a package farows1l

Worker Initialization \

Event History

WorkflowExecutionStarted

// ... code above has been omitted from this excerpt

func GreetSomeone(ctx workflow.Context, name string) (string, error) {
options := workflow.ActivityOptions{
StartToCloseTimeout: time.Second * 5,
¥
ctx = workflow.WithActivityOptions(ctx, options)

var spanishGreeting string
err := workflow.ExecuteActivity(ctx, GreetInSpanish, name).Get(ctx, &spanishGreeting)
if err !'= nil {

return "", err

by

var spanishFarewell string
err = workflow.ExecuteActivity(ctx, FarewellInSpanish, name).Get(ctx, &spanishFarewell)
if err !'= nil {
return "", err
¥

var helloGoodbye = "\n" + spanishGreeting + "\n" + spanishFarewell

return helloGoodbye, nil

workflowTaskScheduled

WorkflowTaskStarted

workflowTaskCompleted

ActivityTaskScheduled (Greeting)
ActivityTaskStarted (Greeting)
ActivityTaskCompleted (Greeting)
WorkflowTaskScheduled
WorkflowTaskStarted
workflowTaskCompleted
ActivityTaskScheduled (Farewell)
ActivityTaskStarted (Farewell)
ActivityTaskCompleted (Farewell)

WorkflowTaskScheduled

WorkflowTaskStarted

Temporal Cluster Client Application

Worker Entity

Poll Task Queue
| Temporal Client I P | Temporal Client |

workflowTaskCompleted

Event History

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted
[h workflowTaskCompleted
// ... this is code within your own application (for example, a web application, mobile app, etc.)
ActivityTaskScheduled (Greeting)
options := client.StartWorkflowOptions{ ActivityTaskStarted (Greeting)
ID: "greeting-workflow", o .
TaskQueue: "greeting-tasks", ActivityTaskCompleted (Greeting)
o ¥ workflowTaskScheduled
we, err := c.ExecuteWorkflow(context.Background(), options, farewell.GreetSomeone, os.Args[1]) workflowTaskStarted
if err !'= nil {
log.Fatalln("Unable to execute workflow", err) WorkflowTaskCompleted
b
log.Println("Started workflow", "WorkflowID", we.GetID(), "RunID", we.GetRunID()) ActivityTaskScheduled (Farewell)
var result string ActivityTaskStarted (Farewell)
err = we.Get(context.Background(), &result)
if err !'= nil { ActivityTaskCompleted (Farewell)
log.Fatalln("Unable get workflow result", err)
) 3 wWorkflowTaskScheduled
Worker Initialization ‘ log.Println("Workflow result:", result)
‘ WorkflowTaskStarted
// ... other application-specific code might follow WorkflowTaskCompleted
L) wWorkflowExecutionCompleted
Temporal Cluster Client Application
Worker Entit
Y Poll Task Queue Request result

| Temporal Client I > < : Temporal Client

Event History
ey The End

WorkflowExecutionStarted

workflowTaskScheduled

WorkflowTaskStarted
[h workflowTaskCompleted
// ... this is code within your own application (for example, a web application, mobile app, etc.)
ActivityTaskScheduled (Greeting)
options := client.StartWorkflowOptions{ ActivityTaskStarted (Greeting)
ID: "greeting-workflow", o .
TaskQueue: "greeting-tasks", ActivityTaskCompleted (Greeting)
i ¥ WorkflowTaskScheduled
we, err := c.ExecuteWorkflow(context.Background(), options, farewell.GreetSomeone, os.Args[1]) workflowTaskStarted
if err !'= nil {
log.Fatalln("Unable to execute workflow", err) WorkflowTaskCompleted
b
log.Println("Started workflow", "WorkflowID", we.GetID(), "RunID", we.GetRunID()) ActivityTaskScheduled (Farewell)
var result string ActivityTaskStarted (Farewell)
err = we.Get(context.Background(), &result)
if err !'= nil { ActivityTaskCompleted (Farewell)
log.Fatalln("Unable get workflow result", err)
) } wWorkflowTaskScheduled
Worker Initialization log.Println("Workflow result:", result)
‘ WorkflowTaskStarted
// ... other application-specific code might follow WorkflowTaskCompleted
L) workflowExecutionCompleted
Temporal Cluster Client Application
Worker Entit
Y Poll Task Queue Provide result

| Temporal Client I P PI Temporal Client

Temporal 101

00
01
02
03
04
05
06
07
08
09

About this Workshop

What is Temporal?

Developing a Workflow

Executing a Workflow

Viewing Workflow Execution History
Modifying an Existing Workflow
Developing an Activity

Handling Activity Failure
Understanding Workflow Execution

Conclusion

Conclusion (1)

 Temporal guarantees the durable execution of your applications

* In Temporal, Workflows are defined through code (using a Temporal SDK)

« Temporal Clusters orchestrate code execution

» Workers are responsible for actually executing the code

 The Temporal Cluster maintains dynamically-created task queues
» Workers continuously poll a task queue and accept tasks if they have spare capacity
* You can increase application scalability by adding more Workers

* You must restart Workers after deploying a code change

Conclusion (2)

 There are multiple ways of deploying a self-hosted Temporal cluster
* Temporal Cloud is an alternative to hosting your own cluster

* Migrating to / from Temporal Cloud requires little change to application code

« Namespaces are used for isolation within a cluster

 The name is often chosen to indicate a specific team, department, or other category

* In the Go SDK, a Temporal Workflow is defined through a function

 Activities are also defined through functions

Conclusion (3)

* Activities encapsulate unreliable or non-deterministic code
* They are automatically retried upon failure

* You can change this behavior with a custom Retry Policy

« The Web Ul is a powerful tool for gaining insight into your application
* |t displays current and recent Workflow Executions

 The Web Ul shows inputs, outputs, and event history

For More Information

« Temporal Documentation

e Temporal Community Forums

» Temporal Community Slack

« Temporal Samples Repositories at GitHub

« Temporal Education Site

* Temporal YouTube channel

e Temporal Community Events

Exercise #4: Finale Workflow

* During this exercise, you will

* Observe that a Workflow and its Activities can be implemented in different languages

* This example provides a Java Activity and a Go Workflow for you to run

e Refer to the README.md file in the exercise environment for details

« The code is below the exercises/finale-workflow directory

{

Thank You

